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Abstract

The purpose of this thesis was to identify three

promising least sqiiares selection procedures discussed in

the literature during the previous decade and then test them

using simulation. The three criteria chosen for this study

were minimum mean square error (Min MSE), minimum Sp, and

minimum CP.

Most of the previous simulations in this area are limited

to investigating the usefulness of variable selection

criteria when all relevant regressors and some noise

variables are available. It is questionable whether all

relevant variables will be included. This research has

examined the effects of not including a significant variable

in the variable pool.

In examining each criterion, emphasis was placed on the

technique's performance under varying amounts of

multicollinearity, variable variation, number of variables,

and sample size. Response Surface Methodology was used to

determine the effects of varying these factors. A

comparison was then made using the results from the Response

Surface.

To supplement the simulation research a comprehensive

literature review of the most current journal articles

vii
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dealing with several least squares criteria has been

provided. This review includes a discussion of each

technique's strengths and weaknesses. Since many of the

least squares variable selection criteria are addressed,

this thesis serves as a useful starting place for various

regression questions.
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A COMPARISON OF VARIABLE SELECTION CRITERIA

FOR MULTIPLE LINEAR REGRESSION: A SIMULATION STUDY

I. Introduction

Background

Linear regression is a statistical tool used to fit data

to a surface. From the surface, predicted values for the

dependent variable are determined with confidence.

Unfortunately, a difficult aspect of regression analysis is

determining the best set of independent variables to include

in the linear regression model.

Before the wide use of computers, the analyst was forced

to rely on his intuition for determining which variables

should be included in the model. Variable selection

techniques were available but difficult to implement. It

was important for the analyst to "screen" the variables

first by a reasonability test. For example, say the

dependent variable is the height of a man. Possible

independent variables are: size of hand, size of feet, and

blood-type. It seems reasonable to assume that the height

of a man is dependent on the size of his hands and feet.

But, it does not make sense to assume his blood-type

significantly contributes to his height. Therefore, the
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analyst would include only feet and hand size into his

* variable pool. The analyst could perform his analysis on

all the variables in the variable pool, which is ordinary

least squares (OLS), or he could use a variable selection

* method to find the most significant variables. If he simply

calculates the regression equation containing both feet size

and hand size, the method is called OLS. A better model

* might include only one of these variables, so the analyst

might want to use one of the selection criteria on the

variable pool.

Due to computer limitations, only a few criteria for

selecting variables were available, and the literature out-

paced implementation. With computer advancements,

* implementation of new techniques should be increasing;

however, this is not necessarily true. Often, these

published techniques are forgotten. Rarely are the "new

* techniques" tested and implemented. In fact, most of the

techniques currently in use are 1970 vintage, or earlier.

To be sure, some of these "new techniques" are superior to

those in use. Since these criteria are lost in the

literature, research may be suffering.

Several problems can occur if the variable selection is

left solely to the computer. First, there are literally

hundreds of variable selection criteria available. Under

certain circumstances, one method may be superior to

another. By mindlessly using a technique, the resulting

2



model might be worthless. Certainly there are methods which

"screen" better than others. However, there is not a method

which absolutely picks only true variables. During a

simulation study, Flack and Chang demonstrated that when the

variable pool contains true variables, those which

significantly contribute to the dependent variable, and

random noise variables, random noise variables were often

chosen (8:85). Only under the most ideal circumstance were

a fair amount of true variables chosen.

The problem of selecting noise terms was further

illustrated by Freedman. (9) By constructing simulated data

containing only noise variables, Freedman demonstrated that

high R2 values could result when a model contained variables

which are theoretically independent of the dependent

variable. (9:153) The point being, selection criteria are

not fail proof. The model chosen could possibly contain

several noise variables. The more noise variables in the

variable pool (those not screened by other means), the more

likely one or more will be included in the model.

A subsequent simulation study performed by Hoerl, Hoerl,

and Schuenemeyer identified and tested the effects of sample

size, random noise variables and correlated data on biased

regression techniques and least squares regression. (13)

Their results indicated that both biased and least squares

regression performed equally well except for stepwise

3



regression and principle component regression which

* performed poorly. (13:369)

Objective

The objective of this research is to identify three

* promising least squares selection procedures discussed in

the literature during the previous decade and then test them

using simulation. The simulation was similar to Flack and

Chang's in the sense that the effects of noise variables and

sample size were examined (8:84-86), but did not make the

same assumptions and used different criteria. Flack and

Chang tested the R2 and stepwise procedures. Like several

other simulations, they included all the true variables and

some noise variables and then determined how many noise

* variables were selected. This research examined three

criteria, minimum mean square error (Min MSE), minimum SP,

and minimum C, and included random noise variables. An

extension of Flack and Chang's work has been made. Flack

and Chang's research did not examine the problem of not

including all the significant variables. In the previous

example, data on the height, size of feet, size of hands,

and blood-type of a man was collected. It is possible that

the weight of a man is a also a significant factor in

determining the man's height, but that no information has

been collected on the man's weight. Most criteria are based

on the assumption that all relevant variables are included

in the variable pool; however, the fact is, all relevant

4



variables may not be included. This research has examined

* the effects of not including a significant variable in the

variable pool.

In examining each criterion, emphasis was placed on the

* technique's performance under varying amounts of

multicollinerarity, variable variation, number of variables,

and sample size. Response Surface Methodology was used to

determine the effects of varying these factors. A

comparison was then made using the results from the Response

Surface.

Previous simulations have based their comparisons solely

on the number of noise variables chosen. (2;8;12) The

weakness of this performance measure lies in the fact that

as the number of variables in the variable pool changes, the

likelihood of choosing solely the correct variables also

changes. In this study an alternative performance measure

was be used for comparison.

To supplement the simulation research a comprehensive

literature review of the most current journal articles

dealing with several least squares criteria is provided.

This review includes a discussion of each technique's

strengths and weaknesses. Since many of the least squares

variable selection criteria are addressed, this thesis

serves as a useful starting point for various regression

questions.

5



II. Concept Overview

Least Squares Regression

Assumptions. Assumptions are made prior to constructing

a least squares linear regression. First, assume the

collected data represents the population it came from. That

is, the data reflects the normal case of the variable.

Second, assume the error terms are independent and

identically distributed, from a normal distribution, with a

2
mean of zero and variance o .

Notation. The goal in linear regression is to find the

"best-subset" of independent variables to include in the

model which adequately predicts the value of the dependent

variable. In general, the linear least squares regression

equation is written in the following manner:

Y = BO + BIX I + B2X 2 +...+ B XK + E (1)

where Y is the observed value of the independent

variable.

B0 is the constant term.

BlB 2 ,...,B K are the constant terms for the

dependent variables Xl,X 2,...,Xk.

k is the number of independent variables included

in the model.

E is the error term.

If there are n observations, or data points, the above

equation may be written as:

6



E Y, = E (Bel + BiiX- + B2.X 2 i + ... + Bkl Xki + El ) (2)

.- For convenience, the above equation can be written in matrix

notation.

Y =X B + 6 (3)

* where Y is a (n x 1) column vector:

Yi
Y 2

y --

0

and X is a (n x (k+1)) matrix.

1 X,. X;- X1K

1 X 2 1 X 22 . X 2 K

• X=

1 X, X2 X A

The first column contains all ones for the constant terms.

The remaining columns contain the Xi, independent variables.

The X matrix is commonly referred to as the design matrix.

B is a (k x 1) column vector:

7



BO* B1

BB

BB

and E is a (n x 1) column vector:

e.
e 2

o

In least squares regression, each subset of regression

variables generates a surface which minimizes the squared

distance (error) between the observed values for the

dependent variables, Y, and the predicted values for the

dependent variable Y.

min E E2 = min E (Y - Y) 2  (4)

The goal is to find the subset of variables which minimizes

the squared distances between'the actual values observed and

the fitted surface. The sum of the squared-error values is

commonly referred to as the sum-of-squares error (SSE).

Graphically, in two dimensions a regression resembles the

following:

8
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Figure 1. Two-dimensional representation
of linear least squares regression

where SSR is the sum of the squared distances from the mean

to the regression line and is called Regression

Sum of Squares.

SSE is the sum of the squared distances from the point

to the regression line and is called Sum of

Squares Error.

SST is the sum of SSR and SSE and called Sum of

Squares Total.

SST SSR + SSE (5)

9



III. Review of Past Research

Scope

The main focus of this literature search is limited to

variable selection techniques published since 1978. This

limitation was chosen for three reasons. First, two GOR

students, Captain Larry J. Pulcher (24:1-137), and Second

Lieutenant Joseph R. Cafarella, Jr. (4:1-127), performed

literature reviews on variable selection techniques for

their theses, written in 1978 and 1979 respectively.

Second, most of the implemented techniques were published

prior to 1978. Third, an excellent review of the pre-1980

techniques can be found in Hocking's 1976 paper (12).

Method of Treatment and Organization

This literature review reports methods for selecting the

number of variables to include in a linear regression

equation, as well as specific techniques for selecting the

"best-subset" of variables to include in the regression

equation.

Review

02
If the true variance, 02, of the independent variables is

known, selecting the proper regression model is relatively

simple (7:294). However, the true variance is rarely known

a priori. It is more likely that the underlying variance

will have to be estimated. Therefore, techniques must be

10



available for the analyst so that he may properly select the

variables to include in a linear regression equation.

Number of Variables. Draper and Smith (7:294) discuss

two opposing viewpoints concerning the proper number of

independent variables (or regressors) to include in a linear

regression equation. One viewpoint is all variables should

be included for both a reliable fit and predictive purposes.

The opposite point-of-view is to include as few variables as

possible, which adequately predict, in the model. The

latter point-of-view is commonly referred to as parsimony.

For predictive purposes, Bayesian statisticians recommend

including all possible variables (28:1553). They argue the

cost associated with collecting and maintaining the data

must be considered. If these costs are zero, than every

variable should be included. Only by including as many

variables as possible can one be certain to obtain the best

prediction.

Cafarella (4:14) points out the major flaw of including

every possible variable. The resulting model over-fits the

data. That is, the independent variables not only predict

the dependent variable, but also predict the variation, or

noise. The resulting equation is useful for predicting the

past, but not very useful for predicting the future. Thus,

it is arguable whether including all possible regressors is

the best course of action.

11



Even the Bayesian statisticians agree that if the costs

• of collecting and maintaining data are high, then one should

include as few variables as possible in the model. However,

some believe in the concept of parsimony regardless of the

* costs. Parsimony is predicting as much as possible, with

as little as possible. Trader states, "Variable selection

techniques, which facilitate parsimony, have been viewed

* primarily as providing approximate representations of a true

underlying process." (28:1553) The advantages of parsimony

is that model does not over-fit the data, and it does not

cost as much as a larger model to collect and maintain.

However, the question remains: does the model contain enough

variables to predict adequately?

Recent literature (23:509-16; 3:131-6; 24:45-54) suggests

a method for determining the optimal number of regressors

for a linear regression equation. The two driving factors

for determining the optimal number of regressors are sample

size and the mean square error of prediction (MSEP).

(23:514) MSEP is the squared difference between the

predicted value, Y,., and the actual value, Yn+1, divided by

the degrees of freedom. The MSEP has been decomposed by

Breiman and Freedman (3:131) into the conditional MSEP, and

the unconditional MSEP. The conditional MSEP is

M M E ={ (Y" 1 - Y1 and X for all j
and i = 1,...,n) (6)

12



while the unconditional MSEP is defined as

U = U'p = E{M. (7)

With the mean square error of prediction and a given

sample size, one can fird the optimal number of parameters,

p , to include in the model.

p =k + 1 (8)

where

p is the number of parameters in the model

with Min MSEP.

k is the number of independent variables.

When either M or U from Eq (5) and Eq (6) are minimized,

the corresponding p is the optimal number of parameters for

the regression model. It is apparent that when the sample

size is small, the optimal number of parameters tends to be

small (28:1562).

Choosing the Best Subset of Variables. Regardless of

whether the optimal number of parameters has been

determined, a criterion must be used to select which

variables should be included in the regression equation.

Miller separates possible criteria into "(i) those which

guarantee to find the best fitting subset of some of all

sizes, and (ii) the 'cheap' methods which sometimes find the

best-fitting subsets." (20:391)

"Guaranteed Methods". Miller specifically mentions

two methods which guarantee choosing the best-fitting

13



variables. These two methods are all-subset and branch-and-

• bound.

All-Subsets. In the 1984 article, "Selection

of Subsets of Regression Variables" (20:391), Miller claims

that only by an exhaustive search of all 2 k-1 possible

subsets can one be assured of finding the best-fitting

model. He further suggests the all-subset procedure is

practical only when the number of possible variables is less

than twenty. With the improvement of computers over the

last five years, it might be feasible to test every subset

for more than twenty variables. However, the necessary

number of regressions increases rapidly. For instance, with

twenty variables, over one million subsets must be fit. By

increasing the number of variables by just five to twenty-

five, the number of necessary regressions increases to

roughly 33.5 million.

The all-subset procedare is not without criticism. One

of the underlying assumptions in regression is the variable

pool contains all the relevant variables and some extraneous

variables. (21:160) However, it is possible some of the

relevant variables are not included in the variable pool.

Because of this, the all-subset procedure may not find the

best model in population terms, but always finds the best

model within the variable pool (2:3). In fact, backward

elimination, (one of the "cheap methods," which will be

discussed later), does slightly better than all-subsets

14
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under certain circumstances. Although Berk criticizes the

* all-subset procedure under certain circumstances, he notes

that it usually does well (2:3). With large sample sizes

(approaching the population size) all-subset is the best.

• Branch-and-Bound. Miller includes the branch-

and-bound technique as one of the guaranteed methods when

the optimal number of variables has been determined

* (20:391). The branch-and-bound technique computes only a

fraction of the possible models. It eliminates subsets from

consideration if a calculated subset fits better than the

• eliminated subset could possibly obtain. The eliminated

subsets are said to be "dominated." With some of the models

"dominated," the all-possible subset procedure can be

* implemented on the subsets that are not eliminated by

branch-and-bound. The branch-and-bound technique is not only

useful in eliminating possible subsets, but can be modified

* to be an efficient all-subset procedure (10:510). The

necessary modification requires that the "testing" mechanism

be turned off.

• "Cheap-Methods." Miller conveniently labels all

techniques other than the all-subset and the branch-and-

bound procedures as "cheap." These techniques are cheap in

the sense that they do not require as many calculations for

finding a solution. Consequently, none of the cheap-methods

are guaranteed to find the best-fitting model.

15
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Backward Elimination. Backward elimination is

* a technique which considers all of the possible variables in

the original model, then eliminates, one at a time, those

variables which do not significantly contribute to the

*regression. According to Draper and Smith, "this [backward

elimination] is a satisfactory procedure, especially for

statisticians who like to see all the variables in the

equation once in order 'not to miss anything'." (7:307)

This procedure is satisfactory if the data is not highly

correlated.

Nonetheless, backward elimination has its drawbacks. One

major drawback is once a variable is eliminated, it is not

considered again. It is possible that an eliminated

variable, which did not look significant when it was

eliminated, will look significant after other variables are

eliminated. Another criticism of backward elimination is

that it is not useable when the number of possible variables

exceeds the number of data points. Due to the matrix

manipulations necessary in regression, this procedure cannot

be used when variables exceed data points.

Forward Selection. Forward Selection is

similar to backward elimination. However, instead of all of

the variables being included in the original model, then

eliminating one variable at a time, forward selection starts

with one variable, and includes a variable-at-a-time. The

major advantage of this technique is that it can be

16



implemented when te number of possible variables exceeds

the sample size. This technique can be used since the

original model has one variable, to which variables are

subsequently added. (20:392).

The disadvantages of forward selection are similar to

backward elimination. Like backward elimination, forward

selection performs poorly when variables are highly

correlated. Also, once a variable enters the regression

equation, it is no longer considered for elimination.

Stepwise Regression. Stepwise regression is a

procedure which combines both the forward and backward

selection procedures. Like forward selection, variables are

selected to enter one at a time. However, after a variable

enters the regression equation, all variables in the subset

are reconsidered for elimination. This improvement allows

for the deletion of those variables which do not

significantly contribute to the model.

Draper and Smith recommend this technique. However, they

add the caveat that it is not be used blindly (7:310). If

stepwise regression is used with little thought, many random

noise variables can be selected. As is the case with all of

the techniques, the likelihood of selecting a noise variable

is fairly high if the number of noise variables is high.

To combat this problem Miller suggests an alternative

stopping criterion for stepwise regression. His suggestion

is to add "known" extraneous variables to the variable pool

17



(randomly generated noise) then execute the stepwise

* regression procedure. Once one of the "known" extraneous

variables is selected, terminate the selection process.

(20:395) The concept behind his suggestion is that once a

"known" extraneous variable (one that was augmented to the

variable pool) is selected, there is no more useful

information to be gained by adding another variable. The

model selected will include all variables picked not

including the known extraneous variable. For the technique

to be useful, Miller recommends that the number of added

* extraneous variables should be approximately equal to number

of variables already in the variable pool. (20:395)

Excluding its weakness when several extraneous variables

* are in the variable pool, stepwise regression performs well

when there is little correlation. Many computer packages

use a significance level of 0.05 for forward, backward, and

stepwise procedure. The choice of 0.05 seems to be

arbitrary and unjustified. In fact, the results of a

simulation study conducted by Hoerl, Hoerl, and Schuenemeyer

indicate that a significance level of 0.05 often leads to

poor results (13:378). They demonstrated that many of the

true variables are not selected when the significance level

is 0.05. However, most variables are picked using a

significance level between 0.15 and 0.25

Near-Optimal-Model. Narula and Wellington

(21:169) propose the near-best-model for Mean Square

18



Absolute Errors (MSAE) in 1983. MSAE is the sum of the

absolute difference between the predicted value of Y and the

actual value of Y, divided by the degrees of freedom.

(9)

(n - p)

where

n is the sample size.

p is the number of parameters in the model.

Y is the predicted value for Y.

Y is the actual value of Y.

Narula and Wellington put a "lower and an upper limit on the

number of variables to be included in an effort to

accelerate the implicit enumeration algorithms and aid the

investigator in selecting a model." (21:169) Although they

apply the near-optimal technique to MSAE, they suggest it

may be effective in the least squares case.

Similar to Narula and Wellington's proposed near-best-

model for Mean Square Absolute Errors, Huang and

Panchapakesan have implemented a procedure to eliminate

inferior models with some guaranteed probability (14:753).

Their procedure is based on the residual sums of squares and

is similar to Furnival and Wilson's branch-and-bound

technique. The near-best-model for Mean Square Absolute

Errors is based on SSR making it easy to implement. What

makes this technique especially appealing is that once a

19



model is rejected, then all combinations of its variables

* are also eliminated. (14:758).

An example of how the near-best-method works is the

following:

* Suppose the subset of variables under consideration is

[XI, X2 , X3 1. If this subset of variables is rejected, then

all subsets of X1, X2 , and X3 would also be rejected (e.g.

X , X, X 11 {X 5  , Ix ,X2 , etc.).

Mallows C . Mallows Cp is a statistic used to

determine the best model when the independent variables are

fixed. C. is an approximation of MSEP.

SSR
CZ + 2p - n (10)

2
s

where SSR is the Regression Sum of Squares

s 2  is the estimate for the variance

p is the number of parameters

n is the number of data points

Theoretically the value of CP is p. Therefore, when Cp is

approximately equal to p, the model is good. Draper and

Smith suggest using this criterion in conjunction with

stepwise regression to obtain the best subset (7:341). It

should be noted, however, as the variance approaches zero,

the Cr statistic can not be calculated. Therefore this

method has limitations especially when the fit is perfect.

20



Barr pointed out a weakness of Mallows C. Since s2, used

in the CP statistic, is estimated from the original variable

pool, it could be biased and larger than the true variance.

(1:5) If this is case, the C. statistic will be deflated

causing the wrong model to be selected.

A limitation of C., as well as many other statistics, is

that it "depend[s] on the observed data only through

sufficient statistics, so they model average behavior of the

fit of a model to the data." (30:27) Weisberg developed a

procedure which allocates the C. statistic to individual

cases. The advantage of Weisberg's procedure is if the

model under consideration is biased, it provides a means to

determine the bias of using a subset model instead of the

entire model (30:28)

Another application of the CP statistic is to choose the

model which has the smallest C- value. (15:863) By

choosing the model with the minimum Cp, it is believed that

one is choosing the model with the minimum prediction error.

This is appealing, especially when it is difficult to

determine the optimal subset using the CP close to p

criterion. Since the Min C. criterion is based on minimum

prediction error it is based on a sound principle. However,

like the CP close to p criterion, Min Cp is derived under

the assumption that the independent variables are fixed.

Since this rarely happens in practice, there is some

question to the usefulness of the Min CD criterion. Judge,
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Griffiths, Carter, Lutkepohl, and Lee recommend that the Min

* C. procedure should not be used in any applied work.

(15:864)

Coefficient of Determination. The coefficient

of determination, R, is a statistic which gives an

estimation of the amount of variation about the mean which

is explained by the model.

2  = (Y. - )(11)

E (y Y)

where

A
Y, is the predicted value of Y'.

Y, is the actual value of Y,.

Y is the mean of Y.

At first one might believe that it is desirable to find the

model which has the maximum R2 since it explains the most

variation about the mean. However, this is not necessarily

the best true. Certainly when we look at the R2 value we

would like to see a large value, but it should not be used

as the only measure for subset selection. Maximum R2

receives little praise as far as its usefulness in

determining a good fit. The major pitfall of using R2 is

2 2
that whenever a variable is added, it will increase R . R

will increase regardless of whether the variable has

anything to do with the dependent variable. According to

Healy 1986, "In particular, the multiple correlation

coefficient is not really a regression-related concept at
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all. It is basically defined to be the largest possible

* correlation between the y-variate and any linear function of

the x's and this only makes sense when y and x's have a

joint probability distribution." (11:1984) If maximum R is

*used as the selection criterion, the model containing all

variables will always be selected.

Maximum Adjusted R2 or Minimum MSE. For

simplicity only maximum Adjusted R2 will be discussed.

However, maximum Adjusted R2 and Minimum MSE test exactly

the same thing.

Adjusted R2 is related to R2, but an adjustment has been

made for the degrees of freedom. The following equation

shows the relationship between R2 and Adjusted R2.

2 (1-R2) (n-i)
Adjusted R = 1 - (12)

(n - p)

According to Draper and Smith, the adjusted R2 statistic

can be used not only to compare models for the same data set

(the same variable selection discussed in all other sections

of this literature review), but also to compare models taken

from two entirely different data sets (7:92). However, they

do not recommend using the Adjusted R2 statistic in the

latter role.

The Adjusted R2 statistic (or the minimum MSE criterion)

is still widely used in practice.

Sp. The SP criterion, originally proposed by

Hocking in 1976 (12:20), has considerable appeal and
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consequently receives praise in recent years. The Sp

• statistic is an approximation of the MSEP based solely on

the data and number of variables. As is the case with MSEP,

the goal of this criterion is to find the minimum value.

so  SSE (13)

(n-p) (n-p-2)

Breiman and Freedman point out that the Sp statistic does

not necessary provide an accurate approximation of MSEP,

but works none the less. (3:132)

The advantages of this method are numerous. Looking at

Eq (12) gives the reader an idea of the relative ease with

which S. is calculated. What makes Sp even more appealing

is it is based on MSEP. Thompson points out, "This method

[Sp 3 is based on a sound criterion - that of minimizing the

expected squared distance between the true and predicted

values of the dependent variable, y." (27:6) Since Sp is

an approximation of MSEP, it can be used like MSEP to

determine the optimal number of regressors to include in the

model. (3:132)

S is not without its disadvantages. It must be

calculated for all 2 -1 possible subsets. (27:6) Even

though it requires relatively little computation effort, it

• does require that many regressions be run. Through counter

examples Brieman and Freedman show that when true variance

due to prediction equals zero, the Sp criterion fails to
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pick the optimal number of variables to include in the

* model. (3:132)

Conclusion

• A considerable amount of literature has been devoted to

linear regression in the last decade. This review has

covered a few of the techniques mentioned in the literature.

* By no means should this review be considered exhaustive.

However, it is intended to provide an excellent review of

many least squares regression techniques from the last

decade.

Since the calculations required for the "guaranteed" all-

subsets method virtually make it impossible to use, much of

the effort in the field is to find techniques which require

far less calculation. Unfortunately, the savings in

computer time is off-set by the results. None of the

techniques mentioned in the "cheap" section of this report

guarantee the best-fitting subset of regressors will be

chosen.

Biased Regressors

Up to this point the discussion of literature has been

restricted to selection techniques for least squares. The

advantage of least squares over the techniques discussed in

this section is that the estimators are best linear unbiased

estimators, or BLUE. However, under certain circumstances
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the estimators from least squares can be inferior to biased

• regressors.

An estimator is said to be unbiased if its expected value

of the estimator is the parameter value itself.

E(b) = B (14)

Conversely, if the expected value of the estimator is not

equal to the parameter value, it is said to be biased.

• The following techniques are intended to provide the

reader with some insight into when the use of biased

estimators may be a better course of action than least

• squares. Rather than discuss several biased techniques,

this discussion will be limited to two methods which have

received a great deal of attention in recent literature.

Both ridge regression and principle components, the two

methods to be discussed, are methods for dealing with

multicollinearity.

Ridge Regression. There has been a significant amount of

attention given to Ridge Regression in the past decade.

Ridge Regression is a procedure which attempts to overcome

the effects of highly correlated data. As mentioned before,

many of the least squares selection criteria perform poorly

under such conditions.

There are two situations for which Draper and SpIith

"wholeheartedly recommend ridge regression." The first

situation is when there is "a Bayesian formulation of a

* regression problem with specific prior knowledge of a
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certain type on the parameters." (7:319) The advantage over

* least squares in this situation is that the B's are

restricted a priori. The second situation in which Draper

and Smith recommend Ridge Regression is "a formulation of a

*regression problem as one of least squares subject to a

specific type of restriction on the parameters." (7:320)

Draper and Smith comment that under the two previous

* situations ridge regression is absolutely the correct model

to use. However, they also point out that under any other

situation, there needs to be further investigation to

determine the usefulness of ridge regression.

Dempster, Schatzoff, and Wermuth performed a simulation

study on alternatives to least squares regression in 1977.

They believe ridge regression offers a drastic improvement

over least squares regression when there is a great deal of

correlation between the independent variables (5:77). An

interesting comment by the authors is, "From a frequentist

standpoint, it has long been recognized that good mean

squared error properties do not necessarily follow from the

celebrated minimum variance unbiasedness properties of least

squares, since in certain regions of the parameter space the

loss from increasing the squared bias can be overcompensated

by reducing variance." (5:77)

In a subsequent study (19), Makin tested the ridge

regression procedure and found it performed well. Even
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though his models were fairly trivial, he concluded that

ridge regression is, in fact, a good technique.

It should not, however, be misconstrued that ridge

regression is a cure-all. If many of the variables under

consideration are not related to the dependent variable

ridge regression does not perform very well (13:375). A

suggestion to counter this drawback is to delete a portion

of the variables if there is reason to believe many have

little to do with the independent variable. Another caveat

of using ridge regression is to recognize there is an entire

family of ridge regression techniques. One in particular,

REGF, is not recommended by Dempster, Schatzoff, Wermuth as

a practical tool.

Principle Components. Principle components is another

technique used to combat collinearity and has received a

considerable amount of attention recently . Collinearity

tends to yield highly unstable estimates because the design

matrix is nearly singular. The goal of principle components

is similar to ridge regression in the sense that the goal is

to produce estimates which are not greatly effected by

collinear data. However, unlike ridge regression which

assumes nonsample information (15:909), principle components

does not assume any nonsample information is available.

In principle components, only subsets of the variables

are considered. The choice of subsets can be made "by

* economic theory, previous statistical results, or ad hoc
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dimensionality reduction procedures." (15:909) By reducing

*the number of variables under consideration, principle

components attempts to eliminate variables which do not

necessarily contribute to the model and cause unnecessary

* collinearity.

There is some criticism of the method of principle

components. One criticism by Judge, Griffiths, Hill,

* Lutkepohl, and Lee, is that this method relies on the data

in hand, which is the same weaknesses of every search

method. It is not guaranteed to find the best subset of

* regressors to include in the model (15:910). It is quite

possible that the subset of variables chosen does not

contain all of the true regressors. In their simulation

* study, Hoerl, Hoerl, and Schuenemeyer demonstrated that

principle components performs poorly. (13:375) "It was

rarely noticeably better than LS [least squares), often

* worse than LS and uniformly inferior to RRB [a ridge

regression technique] for all criteria." (13:375)

Conclusion

* If a situation arises when significant multicollinearity

exists, and it is not appropriate to use least squares, it

may be appropriate to use a biased regression technique.

* Two of the methods which have received recent attention are

ridge regression and principle components. However, like

least squares techniques, these techniques give guarantees

* for finding the best )del. Also like least squares, both

29



of these techniques require certain conditions to perform

* optimally. Ridge regression requires some type of nonsample

information while principle components does not. However,

principle components does not perform nearly as well as

* ridge regression and even least squares. These trade-offs

must be considered when deciding on a technique to combat

collinearity.
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IV. Methodology and Model Development

The three techniques selected for this research were

minimum MSE, minimum C, and minimum S,.These techniques

* were chosen for the following reasons:

(1) Each of these techniques are absolute criterion. That

is, they is no "art" necessary. The SP, Cp and MSE statistic

for each subset of variables is obtainable under some all-

subset procedures, such as PROC R2 on SAS. One only needs

to find the minimum value for each technique and the

corresponding set of variables to implement these

techniques. Contrasted with the C0 close to p technique

which leaves confusion as to whether a model is superior to

another simply on the basis of the difference between C. and

p.

(2) All three techniques appear in the last decade's

literature. The Minimum MSE procedure used to be one of the

most widely used methods. Its appeal over techniques such

as Max R2 stems from its adjustment for degrees of freedom.

More recently, SP seems has become the most popular

technique. Its appeal is based on the principle of

minimizing mean square errors of prediction.

(3) The CP criterion is also based on MSEP, and some of

authors praise this criterion.

0
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Overview

With any procedure, certain assumptions must hold to

insure proper execution and least squares is no exception.

As mentioned, by using least squares one assumes the data is

typical of the population, and the error terms are

independent and identically distributed from a normal

population with an expected value of zero and a constant

variance a2. Another assumption often made, yet not

entirely justified, is that all the variables collected

relate to the dependent variable.

Objective

The goal of this thesis is to determine the behavior of

the Min MSE, Min C., and Min SP variable selection criteria.

To do this, response surface techniques was implemented.

Response Surface Methodology

When selecting variables to include in the original

variable pool for the least squares regression equation, it

is desirable to select only those variables which

significantly contribute to the model. However, there is no

guaranteed method to screen the extraneous variables(random

noise terms which do not contribute at all to the model)

from the variable pool. Even more discouraging, once in the

variable pool there is no criterion which guarantees that no

extraneous variables will be chosen for the model. The

problem of selecting extraneous variables is not restricted

to the "cheap" methods. In fact, one of Miller's guaranteed
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methods, the all-subset procedure, which is suppose to

• perform quite well, also occasionally chooses extraneous

variables. The limitations of variable selection criteria,

including the "guaranteed" techniques will be emphasized

* since all three of the criteria under consideration are all-

subset procedures.

Since there really are no "guaranteed methods" for

• capturing all and only the true variables, it is

advantageous to strive for the highest percentage of those

variables chosen correctly. Therefore the performance

measure for the Response Surface is the following:

PM = (number of correct variables chosen)
(15)

(number chosen)

PM is the logical choice for two reasons. First, the best

model may not include all variables it is generated from,

but only the most significant. Even though an independent

variable may have been generated from ten variables, the

best model of reality using, say MSE, may only contain two

of those variables. Therefore, PM compensates by

determining the percentage of correct variables chosen.

Second, PM is influenced by the number of extraneous

variables chosen. If only two variables are chosen, and one

of them is an extraneous variable, it is worse than when ten
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variables are chosen and only one of them is extraneous. PM

allows for such an adjustment.

By using Response Surface Methodology, equations made up

of significant factors (multicollinearity, sample size,

etc.) for each of the three criteria can be fitted. Using

these equations, a comparison of all three criteria under

best-case and worst-case scenarios can be completed.

Data Generation For Response Surface. The data for this

study was generated from the following equation:

Y, = X + X2. + X'I + X4; + Ei (16)

where

Y1 is the dependent variable.

X,.., X4, are correlated, randomly generated

dependent variables.

Ei is a noise term to create variance

in the model.

Most simulation studies investigate variable selection

techniques with all relevant dependent variables plus some

extraneous variables included in the variable pool. This

study attempts to show what happens when one of the relevant

variables is not included in the variable pool.

After the data is created from equation (16), the

independent variable, X4, is dropped from consideration.

This simulates the situation which arises when a significant

variable is not included in the variable pool. In addition
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either one or three noise variables are included in the

* variable pool to simulate data collection on extraneous

variables.

Factors. An equation made up of significant factors and

• factor interactions which adequately predicts the usefulness

of each of the three techniques must be found. Ideally, the

significant factors are observable a priori (e.g. sample

• size, correlation, etc.), thus, allowing for compensation

prior to use. The following are the factors for this study:

(1) The number of extraneous variables ( EX1 , EX 21 EX3 ) in

the original variable pool. These variables are noise, and

therefore are theoretically independent from the dependent

variable. In this study, at the low setting the number of

extraneous variables is 1, and 3 for the high setting.

(2) The amount of the correlation between the dependent

variables, X., X2, X-, and X4 . The low setting is

orthogonal, or zero correlation, while the high setting is

0.9, which is highly correlated.

(3) The variance of the extraneous variables. The low

setting for the variance is 1, and the high setting is 100.

(4) The variance of the independent variables. The low

setting for the variance is 1, and the high setting is 100.

(5) The sample size. The low setting for the sample size

is deliberately near the threshold of the usefulness of the

SP criterion. A requirement of the SP statistic is (n-p-2)

should be greater than zero. At the low setting the sample
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size is 10. The maximum value for p is 7, in the three

* extraneous variable case). When n equals 10 and p equals 7,

the denominator of the S. statistic is one. Therefore, the

threshold for sample size is 10. If the sample size were

• any smaller, S could not be found for all possible subsets.

Thus, the low setting for sample size is 10, while the high

setting is 20.

(6) The variance of the E term. The low setting for the

variance of E is 0.0625, and the high setting is 0.25. The

computer program used to create the correlated data can be

found in Appendix B.

When using Response Surface Methodology it is convenient

to work with coded factors (-1, 1 variables) for the

following reasons:

(1) By coding the factors, the resulting variables are

of the same magnitude.

(2) The calculations necessary for the estimates are

simplified.

(3) The resulting design matrix, Z, is orthogonal. As

a result, the stepwise procedure can be used to find the

significant factors with confidence.

The following equations are necessary to code the

variables:
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ZI = number of extraneous vars - 2

Z2 = (correlation - 0.45) / 0.45

Z3 = (variance of extraneous vars - 50.5) / 49.5

Z4 = (variance of independent vars- 50.5) / 49.5

Z5 = (sample size - 15) / 5

Z6 = (variance of E term - 0.15625) / 0.09375

where Z1 ,..., Z6 are the coded variables.

Table I.
Variable Coding for Response Surface Methodology

Non-Coded Coded

Variable Low High Variable Low High

Number of
extraneous vars 1.0 3.0 ZI  -1 1

Correlation 0.0 0.9 Z2  -1 1

Variance of
extraneous vars 1.0 100.0 Z -1 1

Variance of
independent vars 1.0 100.0 Z4  -1 1

Sample Size 10.0 20.0 Z5  -1

variance of

E term 0.0625 0.25 Z6  -1

Experiment. It seems reasonable to assume

significance in interactions between factors. For example,

there might be a significant interaction between two of the

main factors mentioned above. To insure the accurate

calculation of estimates for both the main factors and
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factor interactions, a full 26 factorial design is

0 necessary. To construct the design matrix for a full

factorial design, the main factors are varied from their low

settings to their high settings in binary fashion. The

• interaction terms are simply the product of the

corresponding main factors. An example of this process

using a 22 full factorial design is summarized in the table

* below.

Table II.

Example of Coding Interaction Variables

Z Z Z1 Z2 (interaction)

-1 -1 1
-1 1 -1

1 -1 -1
1 1 1

If a design with less than 26 runs is used, information on

some of the interactions would be unobtainable.

Each of the 26 runs contains 60 replications. The raw

data was obtained by running regressions on unprocessed data

sets from Appendix B. The code necessary to perform the

regression analysis is found in Appendix C. A FORTRAN

program was written to accumulate the statistics. The

program and a sample output can be found in Appendix D and E

respectively. The following statistics were collected for

each of the 64 runs.
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(1) The average number of variables chosen using each

* technique.

(2) The average number of correct and extraneous

variables of those chosen by the technique.

• Results

Since the design matrix for this experiment is

orthogonal, stepwise regression is used to select the

• significant factors. Resulting equations strictly screen

factors which are most significant to their respective

response. The equations should not be used for predicting

* the percentage of correct variables chosen. Several

unsuccessful transformations were attempted to obtain a

reasonable model, however none made common sense. Many

* models appeared to fit well using several common criteria

(R?, Adj R2 , residual plots, etc), however, the models were

not logical. Using stepwise regression with a significance

level of 0.01, yielded the equations given below. Again,

the role of these equations is restricted to determining the

most significant factors for a comparison of the three

* criteria.

Min MSE. For the Minimum MSE case, only two main factors

were significant. They are the number of extraneous

* variables in the variable pool and the sample size. Since

the variables are coded and the values of the standard

errors for all the estimates are equal, only one value is

• printed for the standard errors.
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• R2  = .9411
Adj R = .9392

ymse(% correct) = .64448797 - .120997 (# ex)
• + .010415(sample)

standard errors = .0039

where

# ex is the number of extraneous variables allowed

in the variable pool.

sample is sample size of each replication for a

* given run.

This equation provides insight into the usefulness of the

Min MSE criterion. Within the data region, the effect of

increasing the sample size can be observed. For every

"extra" data point, an increase of 1.04 percent of correct

variables chosen is expected. This is useful information

since sample size can be moderately controlled. The

equation also indicates a decrease of 12 percent of correct

variables chosen for every extraneous variable allowed into

the variable pool. At first this information seems

irrelevant since there is no way of telling a priori if a

variable is relevant. However, it does emphasize the need

to screen the variable pool before using the Min MSE

criterion. It also shows the danger of the kitchen sink

approach. The kitchen sink approach is where every possible
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variable is tossed into the variable pool and the computer

* is allowed to make all the decisions. Therefore, the two

significant main factors using the Min MSE criterion are

sample size and the number of extraneous variables, and the

• number of extraneous variables is the most significant.

Min S. For the S case, two main factors and one three-

way interaction are significant.

R - .8811
Adj R? .8751

ysp(% correct) = .65598 -. 1148(# ex) -. 0184 (E var)
-. 0 168(int)

standard errors = .0056

where # ex is number of extraneous variables.

E var is variance of the E term.

int is the three-way interaction term.

The three terms are. number of extraneous

variables, the E variance and the

variance of the X variables.

The information obtained here is acceptable but not quite

as useful as in the MSE case. Apparently the most

significant factors which effect S within the observed data

space is the number of extraneous variables and the

variation of Y. Again, the point to emphasize is as few

extraneous variables as possible should be allowed in the

variable pool. It is interesting to note that sample size
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is insignificant at the a=.01 level. The low level set for

sample size was near the threshold of S's usefulness on

purpose. Consequently, S might be a good criterion to use

when the sample size is small.

Min C . Unfortunately the resulting equation for the C_

case is not as descriptive as the two previous cases. The

C equation included two main factors, one three way

interaction, two four-way interactions, and a five-way

interaction.

R = .9280

Adj R 2  = .9202

ycp(%correct) = .65 -. 11(#ex) - .01 (Evar)

-. 01(#ex,xvar,Evar)
+.02(cor,xvar,exvar,Evar)

+ .01(#ex,cor,xvar,exvar,Evar)

standard error = .0045

where

#ex is the number of extraneous variables in the

variable pool.

cor is the amount of correlation between the

independent variables.

exvar is the variance of the extraneous variables.

xvar is the variance of the independent variables.

E var is the variance of the E term.

Only in this equation is the amount of correlation among the

X's significant. Even though it appears in the equation, it
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is not one of the two main factors, but does appear in the

four and five way interaction terms.

As is the case with the MSE equation and the Sp equation,

the number of extraneous variables included in the variable

pool is the most significant factor. However, probably the

most notable result of this experiment is the repetition of

variance factors appearing in the interactions. Actually

* this is expected, since the C statistic is heavily

dependent on the total variation of the variable pool.

Comparison of Techniques

* Up to this point, analysis has betn limited to intra-

technique. That is to say, the models constructed in the

Response Surface phase show the effect of varying factors

* u ing a specific technique. Determining which technique

actually outperforms the other two techniques is more

useful.

* Choice of a Comparison Criterion. Deciding which

performance measure to use for comparing the Min MSE, Min

CP, and Min S. variable selection criteria is not trivial.

* Due to the mechanics of the Min MSE procedure, the resulting

subset of variables is always a super-set of both the Min CP

and Min Sp procedures. Also, in each of the sixty-four

* replications, the Min MSE procedure picked the highest

percentage of correct variables of those chosen;

additionally it picked the most correct variables in

• absolute terms. It seems the Min MSE criterion is superior
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to the other two criterion. However, these statistics are a

* bit misleading.

In each of the sixty-four replications, the Min MSE

criterion chose the most extraneous variables in absolute

* terms. Remembering the concept of best model versus true

model, it is probably worse to have more extraneous

variables in the model than the highest percentage of

* correct variables of those chosen. Therefore, comparing

percentages to determine the "best technique" is not used.

Since there is no clear-cut criterion for comparing

variable selection techniques, it was decided to compare how

well each criterion performs using theoretical minimum mean

square error of prediction (TMSEP).

z (Y. - Yp)

TMSEP - "YZ Y (17)

(n - p)

where

Yt is the theoretical value of the independent

variable Y.

Y. is the predicted value of Y, using one of the three

criteria.

n is the sample size.

p is the number of parameters in the predicting

equation.
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There are two reasons for picking TMSEP as the

• performance measure. First, MSEP has received considerable

attention during the past decade as the most promising

criterion for variable selection. Second, the S criterion,

* which is based on MSEP, is praised and considered by many as

the method which insures the model selected has the Min

MSEP.

* The TMSEP criterion is a variation of MSEP. Like MSEP,

TMSEP calculates the squared difference between the

predicted value and the actual value of the independent

* variable and adjusts the value for degrees of freedom.

However, TMSEP differs from MSEP in its calculation. TMSEP

is the squared difference between the actual value, from the

* underlying equation that is generating the independent

variable (not including the error term, E), and the

predicted value using the model picked by the variable

* selection procedure. The resulting value is the theoretical

mean square error of prediction (TMSEP).

At first, it appears this performance measure unfairly

• favors the Minimum C and Minimum SP criteria. Both of

these criteria are based on minimum MSEP. The difference

between the two lies in the assumption that the regressors

• are fixed in the C case and are random in the Sp case.

Since the regressors in this study are randomly generated,

it is then assumed that the S P criterion would outperform

• the other two. However, this is not necessarily true.
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It is assumed when calculating the S and CP statistics

* that all relevant variables are included in the variable

pool. It is also assumed that variable pool does not

contain extraneous variables. In this study both of these

* assumptions are violated. Therefore, it is possible that

either the C. or MSE criterion could outperform the Sp

criterion. Since the MSE criterion is not designed to

• minimize MSEP, it is doubtful whether it would outperform

the other two criteria usina TMSEP as the performance

measure.

• Performance of the Selection Technique using TMSEP.

Measurement of each criterion's performance is recorded

under best-case and worst-case factor settings. If a

technique outperformed the other two in both the best-case

scenario and worst-case scenario, it is superior to the

other two.

Since determining the necessary sample size is difficult,

runs were made until the distributions for each technique

stabilized. The number of necessary number of runs was 180

for both the best-case and worst-case scenarios.

Method of Comparison. For each of the 360 runs, the

TMSEP value was calculated for every subset of variables.

For example, when the factor setting for extraneous

variables was one (best-case factor setting), there were

four possible regressors. Since there were 2k-1 subsets

possible, in our example, fifteen TMSEP values were
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calculated. In the three extraneous variable case the

* number of values increases to sixty-three. The 2k_ TMSEP

values were then ordered from lowest to highest; lowest

being more desirable. The TMSEP values are then calculated

• for the models chosen by each of the three techniques.

Then, the values calculated from each technique's choice was

compared to the rank ordered values and its ranking was

* recorded. For instance, if the value chosen by a technique

was identical to the lowest value of TMSEPs, then a "one"

was recorded. Additionally, the ranking of the TMSEP value

• for each technique was compared to the other two and

recorded. A FORTRAN program was written to execute the

procedure outlined in this section. The code for this

* program can be found in Appendix F, and a sample output can

be found in Appendix G.

Best-Case Comparison. Using the equations found in

* the Response Surface phase, a common set of factors was

obtained which constitutes a best-case scenario. The

following settings maximize each techniques performance:
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Table III.
Factor Settings For Best-Case Scenario

variable Non-Coded value coded value

Number of
extraneous variables 1.0 -1.0

Correlation 0.9 +1.0

Variance
of extraneous variables 100.0 +1.0

Variance
of independent variables 1.0 -1.0

Sample size 20.0 +1.0

* Variance of E term 0.0625 -1.0

The Min S criterion was derived under the assumption that

the regressors are random, while the Min CP criterion was

derived under the assumption that the regressors are fixed.

Since the regressors are random in this experiment, it was

expected that there would be a significant difference

between the two. The following two figures summarize the

results from the best-case comparison.
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The cumulative distribution function of each technique

indicates there probably is a significant difference between

the two MSEP procedures, the difference between MSE and the

other two is obvious. The chart below summarizes the number

of times each technique chose the lowest TMSEP value amongst

the three.

0 Table IV.
Best-Case Scenario Results

Criteria Number of times
Percentage
Lowest Value

CP only 1 0.5%
S. only 9 5.0%
MSE only 1 0.5%
CP and S. tied 58 32.0%

SCP Sr, and MSE tied 111 62.0%

Allowing for ties, the following are the percentages that

* each technique found the lowest TMSEP value amongst the

three.

Table V.
Best-Case Scenario Results

Criterion Percentage of time
lowest, or tied for
lowest amongst the
three

Co P94.0%

S P 99.0%
MSE 62.0%
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The table above reaffirms our expectation that the Min SP

criterion is superior to the Min CD criterion under a best-

case scenario. To determine if the difference actually

exists a hypothesis test is performed. The null hypothesis,

Ho, is: the percentage of lowest TMSEP values chosen solely

by the Min S. criterion equals the percentage chosen solely

by the Min CP criterion. The alternative hypothesis, Ha,

is: the percentage chosen solely by the Min SP criterion is

not equal to the percentage chosen solely by the Min CP

criterion.

Ho: Pcp = Psp
Ha: Pcp * Psp

a = 0.05
critical probability 0.039

The following is the equation used to calculate the critical

probability:
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where i is number of occurrences out of 9 trials, that CP

chose a model with a lower TMSEP value.

9 is the total number of times the two MSEP

criteria differed.

This equation is based on the binomial distribution with a

probability of 0.5. That is, the chance of one criterion

picking the lowest TMSEP value is equal to the other.

Since the significance level is larger than the critical

probability, the null hypothesis is rejected. The

conclusion is there is a significant difference between the

two criteria under the a best-case scenario, and the Min S.

is superior.

Worst-Case Comparison. By reversing the factor settings

of the best-case scenario, a worst-case scenario is

obtained.
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Table VI.
Factor Settings For Worst-Case Scenario

variable Non-Coded value coded value

Number of

• extraneous variables 3.0 +1.0

Correlation 0.0 -1.0

Variance
of extraneous variables 1.0 -1.0

Variance
of independent variables 100.0 +1.0

Sample size 10.0 -1.0

* Variance of E term 0.25 +1.0

Similar to the best-case scenario results, the Min MSE

criterion did significantly worse than the other two

technique.. The graph below shows the cumulative

dlstribution function for each of the criteria (the worst-

case bar graphs are located in Appendix A).
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Notice the cumulative distribution for C p is larger than the

*- other two criteria for most rank ordered TMSEP values. This

is surprising since the factors are random. The question is

whether the difference between the two MSEP criteria is

* significant. If so, the usefulness of the minimum Sp

criterion would be questionable.

Table VII.
*- Worst-Case Scenario Results

Criteria Number of times Percentage
Lowest Value

* C. only 28 16.0%
S. only 4 2.0%
MSE only 0 0.0%
C_ and S0 tied 81 45.0%
C , S., and MSE tied 67 37.0%

Allowing for ties, the percentage each technique found the

lowest TMSEP value amongst the three are summarized in the

* table below.

Table VIII.
Worst-Case Scenario Results

* Criterion Percentage of time
lowest, or tied for
lowest amongst the
three

* cP 98.0%
S91.0%
MSE 67.0%
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Since the Min C_ criterion appears to be significantly

better than the Min S criterion, a two tailed hypothesis

test at the a=0.05 level was performed. This test was

identical to the test in the best case scenario. The null

hypothesis was: the percentage of lowest TMSEP values chosen

solely by the Min Sp criterion is equal to the percentage

chosen by the Min Cp criterion. While the alternative

hypothesis was: the percentage chosen by the Min SO

criterion is not equal to the percentage chosen by the Min

CD criterion.

Ho: Pcp = Psp
Ha: Pcp 4 Psp

a = 0.05
critical probability = 0.00002

The critical probability for this hypothesis test was

calculated in exactly the same manner as in the best-case

scenario. The equation necessary to find the critical

probability is:
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where

i is number of occurrences out of 32 trials, that

CP chose a model with a lower TMSEP value.

32 is the total number of times the two MSEP

criteria differed.

Since the critical probability is less than the

significance level, the null hypothesis is rejected. Thus,

the conclusion is the Min CP criterion significantly

outperforms the Min SP criterion in the worst-case scenario.

58



V. Conclusions and Further Research

The objectives of this research were: (1) identify some

promising least squares selection procedures discussed in

the literature during the previous decade, (2) use Response

Surface Methodology to find the factors which most

significantly drive the selection process for each of the

these techniques, and (3) make a best-case and worst-case

scenario comparison of the techniques.

Conclusion

The three techniques chosen, Min MSE, Min C. and Min SP,

have received praise in the last decade's literature. About

ten years ago Min MSE was considered a favorable technique

because of its similarity to the Max R? criterion, with an

adjustment for degrees of freedom. In resent literature,

the Min S. and Min C_ criteria have received the majority of

praise. Both techniques are based on the principle of

minimizing the mean square errors of prediction. Of the

two, the Min S_ criterion has received more attention. Its

uses vary from finding the optimal number of variables to

include in the model, to finding the best subset of

variables. Unlike Min C., Min Sp is designed for random

regressors, which is more practical.

During the Response Surface phase, emphasis was placed on

the technique's performance under varying degrees of

multicollinearity, variable variance, number of variables,
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and sample size. A full 2 factorial design was constructed

to find the most significant factors and their interactions.

The three equations developed from the Response Surface

phase show the relative weights of the most significant

variables. These equations serve as a screening method, and

should not be used to predict the percentage of correct

variables of those chosen for any of the techniques.

The most noticeable result from the Response Surface

phase dealt with the number of extraneous variables which

were included in the variable pool. This factor was

overwhelmingly the most significant in determining the

percentage of correct variables chosen by a technique. In

fact, if the number of extraneous variables was the only

variable in any of the Response Surface equations, it would

account for over 85% of the variation about the mean.

Therefore, it is very important to screen the variables used

in a regression analysis by some other means than just

letting a computer program do the work.

The conclusion dealing with extraneous variables is

consistent with Freedman (9), Flack and Chang (8), and

Hoerl, Hoerl, Schuenemeyer (13), as well as Miller's

suggested technique for a stepwise regression stopping-rule.

It can not be over-emphasized that the "kitchen sink"

approach is not the best way to go. One must decide which

variables seem relevant to the dependent variable. If a
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good reason for including a variable can not be determined,

then it should not be included in the model.

Using common factors of the three equations found in the

Response Surface phase, a best-case and worst-case scenario

comparison was made using the theoretical mean square errors

of prediction (TMSEP). Since the information necessary to

find TMSEP is not available in practice, this statistic's

usefulness is restricted to the simulation arena. However,

if a technique such as (Min S,) is suppose to minimize MSEP,

then it is expected that it will also have one of the lowest

TMSEPs of all possible models. Likewise, since Min C, is

also based on minimizing MSEP, it was expected to do fairly

well.

The results of the best-case comparison indicate the Min

S_ criterion performs better than Min C . Since the Min SP

criterion is by definition made for random regressors, one

would expect it to do significantly better than Min Cp.

Both criteria did very well in absolute terms. Over 75% of

the TMSEP values calculated from the models chosen by SP and

CP were in the upper half of rank ordered TMSEP values. 14%

of the values found from the MSEP criteria's model were the

absolute lowest TMSEP value possible. This is extremely

good considering a fundamental regressor was dropped from

the variable pool prior to using the variable selection

criterion.
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The results from the worst-case comparison were shocking.

Surprisingly, Min C, outperformed SP. What makes this so

surprising is the assumption that the regressors must be

fixed to implement CP. The difference between the Cp and SP

could be attributed to many things. First, when these two

criteria were derived there was an assumption that all

relevant regressors were included, and no extraneous

variables were included in the variable pool. Both of these

assumptions have been violated in this research. Under

these circumstances, it is possible C. outperforms Sp

regardless of the nature of the regressors. In the best-

case scenario, the MSE criterion performed significantly

worse than the other two criteria.

The results of this thesis provide insight into the

usefulness of the Min MSE, Min S., and Min C P criteria

under realistic conditions. It is possible that variables

which significantly contribute to a model may be left out of

the variable pool. It is also possible some extraneous

variables will be included. The most important lesson of

this research is: the number of extraneous variables which

are in the variable pool significantly detriments the

selection process. There must be some thought, commonly

referred to by Operation Research analysts as the "art",

used when picking variables to include in the variable pool.

Not even the state-of-the-art variable selection criteria

are able to perform well when the variables have not been
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properly screened before implementation. This information

* may be useful to those who make a practice of collecting

data on everything and letting the computer pick the

"optimal model."

* Another useful result of this research is the comparison

of two MSEP criteria. A great deal of praise has been given

to the minimum SO criterion in the past decade. It has been

* identified as "one of the most promising" when the

regressors are random, and one desires to minimize the mean

square error of

* prediction. The minimum Cp criterion has also received

praise for minimizing mean square error of prediction, but

its usefulness is limited to cases where the regressors are

• fixed. Some have recommended that the Min CP criterion

should not be used in practice.

The results of this thesis indicate that the Min Sp

• criterion does, in fact, perform well when the circumstances

are "nice." However, when circumstance are poor, the Min C

criterion does better than S.. Ironically, there is no way

* to be sure whether the conditions the variable selection

techniques must perform under are best-case or worst-case,

yet it seems like such information is necessary if one

intends to minimize MSEP.

Recommendations for Further Research

A study of this intent lends itself to many follow-on

studies. The methodology and groundwork are established but
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embellishments will be necessary. Using more complex models

* would be one example. The model used in this study was

simple: four regressors created the data with one eliminated

from further consideration.

• A full-blown simulation could be implemented to construct

guidelines for usage of these criteria. For instance in

this study, results indicate that if the circumstances are

* favorable, use the Min SP criterion. However, if the

circumstances are unfavorable, use the Min Cp criterion. By

expanding the simulation to randomly generate many true

• variables and many extraneous variables and then eliminate a

random number of variables, guidelines could be established

for which technique should be used under various conditions

• that seem most likely. That is, if it is likely to be a

situation where there are many extraneous variables and many

variables omitted, use one technique, otherwise use another.

* Even though it is impossible to determine whether there are

going to be many extraneous variables, one can assume if the

dependent variable is something entirely new, like a flight

* characteristic of the Soviet's new Blackjack bomber,

information on significant variables will be unobtainable.

Likewise, some data collected probably will have little to

* do with the dependent variable. In such circumstances it

would be useful to have a guideline for which variable

selection criterion should be implemented. To completely

* examine the usefulness of each criterion and establish
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guidelines, further research should include interaction

* terms and indicator variables.

One area which leads to further research deals with

Response Surface. The data range used for this thesis was

* limited. It may be useful to expanding the Response Surface

region to include negative correlation and larger sample

sizes. If an indicator variable was used to contrast the

* effect of dropping a variable, the loop would be complete.

That is, by including a variable to keep track of the

difference between the full model and a model where a

* variable is dropped, one could quantify the effects of

failing to collect data on all the significant variables.

In this thesis, only information from dropping a variable

• was collected. It was assumed that if all variables were

present, the techniques would perform better; plus similar

simulation studies recorded results without dropping

* variables. However, it would be worthwhile to quantify the

effects not including all significant variables into the

variable pool.

* This research has skimmed the surface of many myths

associated with variable selection techniques, and in

particular the usefulness of the Cp criterion. Some authors

* regard the Min C criterion as secondary to the Min Sp

criterion. However, the results of this simulation do not

support such ranking. The two criteria perform differently

* under certain circumstances. Under the best-case scenario,
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the Min S criterion significantly outperform the Min CP

criterion. However, under the worst-case scenario, the Min

C. criterion significantly outperforms the SP criterion.

Other simulations deal with the number of correct

variables chosen of those available in absolute terms. No

provisions are made for circumstances in which significant

regressors are not included in the variable pool.

Therefore, techniques praised as good variable section

techniques may not be as appealing as originally thought.

This research indicates this is the case with the Min S

criterion.
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Appendix A: Bar Graphs For Worst-Case Comparison
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Figure 6. Bar Graph for Results from SPunder a Worst-Case
Scenario
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Appendix B: Macros to Generate Correlated Data

Using S on the ASC or Success on the CSC

###########################################################

# This macro is designed to calculate correlated data from

# a random sample. This macro is for the 1 extraneous

# variable case. There is also a macro found for the 3

# extraneous variable case.

# To implement this program, the user must enter the S

# computer package by typing S on the ASC or Success on the

# CSc.
#
# Once in S, the following inputs must be made:

# 1. The 4x4 correlation matrix, K
# > K raatrix(read(,4,4,byrow=T)

> "now input the rows of the matrix"

#
# 2. The standard deviation of the extraneous variables

# > exerrstd "value"

# 3. The standard deviation of the independent variables

# > xerrstd_"value"
#
# 4. The standard deviation of the E term

# > yerrstd_"value"

# 5. The sample size (this is a two step procedure)
# > ptsperset_"sample size"
# > samplesize_"total number of points desired

# samplesize*number of runs

# The macros can be implemented by the following commands

# >source "make.lerror" for 1 ex vars case

# >source "make.3error" for 3 ex vars case

*#
# The files which are implemented by these macros are the

# following:

# 1. make.lerror
# 2. make.3error
# 3. batch
# 4. four
# 5. matgen
# 6. qmake
# The data that is generated has an appended column of

# integers which is used in the SAS runs.• ############################################################
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*# The following must be typed to write the data to a file.

# > write(t(Z),"filename",#)
# filename must be in quotes and # is the number of
# columns of the data set. In the lex case it is 7
# in the 3ex case it is 9.*#

> # u an v are random noise, mean 0, and std exerrstd
> v-rnorm(samplesizeO,exerrstd)
> u_rnorm(samplesize,0,exerrstd)

> # xl. .x4 are the independent variables

> xl _rrorm(samplesize,O,xerrstd)
> x2_rnorm(samplesize,0,xerrstd)
> x3_rnorm(samplesize,O,xerrstd)

*> x4_rnorm(samplesize,O,xerrstd)

> X-cbind(xl,x2,x3,x4)

> e_eigen(K)
> lamb diag(e~values)
> P eSvectors

*> XTX_t(x)%*X
> qqe$values
> sigdiag(X7'X)
> qlqq/sig
> Qi _diag~sqrt(ql))
> Q_-Ql%*t(P)
> z-x%*Q
> op~rnorm(samplesize,O,yerrstd)
> yZ[,1 +z[ , 2>-ZE, 31+Z[ , 4+op
> error-rnorm( samplesize,0, exerrstd)
> Z-cbind(y,Z,error)

* ># The following statements create the appended integers

> gdiag(diag(ptsperset)
> gg c(g,g*2, g*3,g*4,g*5,g*6, g*7 ,g*8,g*9,g*10)
> ggc(gggg+10, gg+20, gg+30,gg+40, gg+50)
> Z-cbind(gg,Z,vu)
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Appendix C: An All-Subsets SAS Program
To Calculate all S and MSE values

option lines ize=80;
filename new 'rsep.dat';
data new;
infile new;

* input set y x1 x2 x3 x4 el;
proc rsquare data~new mse sp cp b;
by set;
model y= x1 x2 x3 el
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Appendix D :Fortran Program to Find
the Min MSE, Min C- and Min S, Values and Models

* This program is designed to take a modified SAS listing
S* from Appendix C (the modification is simply deleting

* all lines except for the raw data i.e. the number of
* variables, the R2 , the MSE, the SP, and C values, as

* well as the variables printed. The program finds the
* correct model using the Min MSE, Min Sp, and Min C
* criteria. In each case, the model chosen by each

* * technique is printed. The values for each criteria are
* also printed.

* Statistics are collected on the average number of
* variables chosen and the number of extraneous variables
* chosen

* *

* variables num is the number of variables in the model
* this is the first column of the SAS
* listing

* i,j,k are counters for do loops.

* ptrmseptrspptrcp are variables used to keep
* track of the min values.

* numcp,numsp,numnmse are the average number
* of variables chosen by their
* respective technique.

* cperr,sperr,mseeer are the average number
* of extraneous variables chosen
* by their respective technique.

integer num(63),ij,k,ptrmse,ptrsp
* integer ptrcp,varsmse,varssp,varscp

integer check(6)
integer n,emse,esp,ecp
integer ccp,cmse,csp
integer chartmse(0:3,0:3),chartcp(0:3,0:3)
integer chartsp(0:3,0:3)

* real MSE(63),Sp(6 3 ),cp(63),r2(63)
real minmse,minsp,mincp,nummse,numcp,numsp
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real mseeer,cpeer,speer
character*2 m (6,63)

* check(l)=6
check (2) =21
check (3) =41
check (4) =56
check(5) =62
check (6) =63

do 7 i = 0,3
do 3 k = 0,3

chartmseCi, k) =0
chartcp(i, k)=0
chartsp( i,'A) =0

* 3 continue
7 continue

varsmse=0
varssp =0
varscp =0

* cumemse=0
cume sp=O
cumecp=0
open (unit=10,file="temp"l,status='old')
open (unit=ll,file='OUT',status='new')

0 do 20 k=1,60
do 10 i=1,63

ems e=0
esp=0
ecp=0
read (10, *)

* num(i) ,r2(i) ,MSE(i) ,Sp(i) ,cp(i)
+ ,(m(j,i),j=l,num(i))

minrnse=1 0000
minsp =10000
mincp =10000
ptrmse=0

* ptrcp =0
ptrsp =0
do 30 j= 1,6

if(mse(check(j)).lt.minmse) then
minmse=mse (check i))
ptrmse=check (j)

* endif
if(sp(check(j)).lt.niinsp) then
minsp=sp(check(j))
ptrsp=chez-k C)

endif
if(cp(check(j)).lt.mincp) then

* mincp=cp (check (j))
ptrcp-check Cj)
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endi f

30 cniu
30 continue

varsmse=varsmse+num(ptrmse)
varssp =varssp +num(ptrsp)
varscp =varscp +num(ptrcp)

do 70 n~l num(ptrmse)
if(m(n,ptrmse).EQ.'El1) then
emse=emse+l
elseif(m(n,ptrmse).eq.'E 2 ,) then
emse=emse+ 1

* elseif(m(n,ptrmse).eq.'E3') then
einse=emse+l
else

continue
endi f

*70 continue
do 80 n=l,num(ptrsp)

if(m(n,ptrsp).eq.'El') then
esp=esp+l
elseif(m(n,ptrsp).eq.IE2') then
esp=esp+l

* elseif(m(n,ptrsp).eq.IE3') then
esp=esp+l
else
continue
endi f

80 continue
do 90 n~1,num(ptrcp)

if(m(n,ptrcp).eq.'El') then
ecp=ecp+ 1
elseif(m(n,ptrcp).eq.'E2') then
ecp=ecp+ 1
elseif~ni(n,ptrcp).eq.'E3') then

* ecp=ecp+l
else
continue
endif

90 continue

* cumemse=cumemse+emse
cumesp=cumesp+esp
cumecp=cumecp+ecp
cmse-num(ptrmse)-emse
ccp=num(ptrcp) -ecp
csp=num Cptrsp) -esp
chartmse(clse,emse)uchartmse(cmse,emse)+1
chartcp Cccp, ecp) =chartcp (ccp, ecp) +1
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chartsp(csp,esp)=chartsp(csp,esp)+l

write(ll,*) 'MSE',num(ptrrnse),mse(ptrmse)
+ ,Sp(ptrmse),cp(ptrmse)
+ ,(m(j,ptrmse),j=l,num(ptrmse))

write(11,*) 'Sp',num(ptrsp),mse(ptrsp)
*+ ,Sp(ptrsp),cp(ptrsp),

+ (m(j,ptrsp),j~l,num(ptrsp))
write(ll,*) 'Cp',num(ptrcp),mse(ptrcp)

+ ,Sp(ptrcp),cp(ptrcp),
+ (m(j,ptrcp) ,j~l,num(ptrcp))

write(ll,*) '*******************

* write(ll,*)
write(ll,*)

20 continue
nummse = real(varsmse)/60.0
numsp = real(varssp)/60.0
numcp = real(varscp)/60.0

* mseeer= rea].(cumemse)/60.0
cpeer = real(cumecp) /60.0
speer = real(cumesp) /60.0

write(ll,*) 'The avg number of vars using MSE
was ' , nummse

write(ll,*) 'The avg number of errors from MSE
* was' , mseeer

write(ll,*)I
write(1'1,*) 'The avg number of vars using Sp was',

numsp
write(11,*) 'The avg number of errors from Sp was

,speer
write(ll,*) '

write(11,,*) 'The avg number of vars using Cp was
,n umcp

write(ll,*) 'The avg number of errors from Cp was
1cpeer

write(ll,*)I
write(ll,*)I
write(11,,*) MSE TABLE'
write(ll,*) I

do 100 i=0,3
write~ill,*) (chartmse(i,j) ,j=0,3)

100 continue
write(ll,*)
write(ll,*)
write(l1,*) 'Sp TABLE'
write(11 ,*)
do 110 i=0,,3

write~li ,*) (chartsp(i,j) ,j=0,3)
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110 continue

* write(ll,*)
write(l1,*)
write(11,*) ICp TABLE'
do 120 i=0,3

write(11 ,*) (chartcp(i,j) ,j=0,3)
120 continue

* END
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Appendix E: Sample Output for Phase one of Analysis

The following is a sample of the output for one run (with 60

replications) for the Response Surface Methodology Phase

* (program found in Appendix D). The first column contains

the technique used. The second column is the number of

variables chosen. The third, fourth, and fifth columns are

*the values for Min MSE, Min Cp, and Min S P respectively.

The last column is the actual model chosen by the technique.

*MSE 1 0.100654 1.4379le-02 -0.266093 X1
Sp 1 0.100654 l.43791e-02 -0.266093 X1
Cp 1 0.100654 1.43791e-02 -0.266093 X1

*MSE 2 5.32424e-02 8.87374e-03 1.35403 X2 El
Sp 1 6.00226e-02 8.57466e-03 0.898098 El
Cp 1 6.00226e-02 8.57466e-03 0.898098 El

*MSE 3 7.63447e-02 1.52689e-02 3.17057 X1 X2 El
Sp 1 7.64603e-02 1.09229e-02 0.904536 X2
Cp 1 7.64603e-02 1.09229e-02 0.904536 X2

*MSE 1 2.95358e-02 4.21940e-03 -0.285088 X3
Sp 1 2.95358e-02 4.21940e-03 -0.285088 X3
Cp 1 2.95358e-02 4.21940e-03 -0.285088 X3

**** 2******* 4.95487e-02*8.2581e *03 *1.35192 *X2*X

* Sp 2 4.95487e-02 8.25812e-03 1.35192 X2 X3

Cp 1 5.93601e-02 8.48001e-03 1.32763 X2

MSE 2 6.12631e-02 1.02105e-02 1.09398 X2 El
*Sp 1 6.46866e-02 9.24094e-03 0.147028 X2

Cp 1 6.46866e-02 9.24094e-03 0.147028 X2
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MSE 2 3 .19134e-02 5.31889e-03 1.45195 X2 X3
Sp 1 3.24903e-02 4.64148e-03 0.343450 X2
Cp 1 3 .2 4903e-02 4.64148e-03 0.343450 X2

MSE 1 6.24057e-02 8.91510e-03 -0.299912 X3
Sp 1 6.24057e-02 8.91510e-03 -0.299912 X3
Cp 1 6.24057e-02 8.91510e-03 -0.299912 X3

MSE 1 3.94331e-02 5.63330e-03 -0.741483 X2
Sp 1 3.94331e-02 5.63330e-03 -0.741483 X2
Cp 1 3.94331e-02 5.63330e-03 -0.741483 X2

MSE 1 2.25172e-02 3.21674e-03 1.02995 El
Sp 1 2 .25172e-02 3.21674e-03 1.02995 El
Cp 1 2 .25172e-02 3.21674e-03 1.02995 El

MSE 2 2.43904e-02 4.06507e-03 1.66245 X2 X3
Sp 1 2.54640e-02 3.63772e-03 0.756217 X2
Cp 1 2.54640e-02 3.63772e-03 0.756217 X2

*MSE 2 3.30050e-02 5.50083e-03 1.29611 Xl X2
Sp 2 3.30050e-02 5.50083e-03 1.29611 Xl X2
Cp 2 3.30050e-02 5.50083e-03 1.29611 Xl X2

MSE 2 3 .95879e-02 6.59799e-03 1.55024 Xl X2
Sp 2 3.95873e-02 6.59799e-03 1.55024 Xl X2
Cp 2 3.95879e-02 6.59799e-03 1.55024 Xl X2

MSE 1 8.97254e-02 1.28179e-02 -0.889888 Xl
Sp 1 8.97254e-02 1.28179e-02 -0.889888 Xl
Cp 1 8.97254e-02 1.28179e-02 -0.889888 Xl

MSE 1 3.95394e-02 5.64849e-03 -0.658592 X2
Sp 1 3.95394e-02 5.64849e-03 -0.658592 X2
Cp 1 3.95394e-02 5.64849e-03 -0.658592 X2
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MSE 2 3.60757e-02 6.01262e-03 1.61985 X2 El
Sp 1 3.66450e-02 5.23500e-03 0.524038 El
Cp 1 3.66450e-02 5.23500e-03 0.524038 El

MSE 2 5.85844e-02 9.76407e-03 2.28246 Xl X2
Sp 2 5.85844e-02 9.76407e-03 2.28246 Xl X2
Cp 2 5.85844e-02 9.76407e-03 2.28246 Xl X2

MSE 2 4.41387e-02 7.35645e-03 1.80789 X2 X3
Sp 1 4.42947e-02 6.32782e-03 0.661062 X2
Cp 1 4.42947e-02 6.32782e-03 0.661062 X2

MSE 1 0.100894 1.44134e-02 -0.614306 X3
Sp 1 0.100894 1.44134e-02 -0.614306 X3
Cp 1 0.100894 1.44134e-02 -0.614306 X3

MSE 1 3.93769e-02 5.62527e-03 -0.790119 X3
Sp 1 3.93769e-02 5.62527e-03 -0.790119 X3
Cp 1 3.93769e-02 5.62527e-03 -0.790119 X3
Cp 1 4.669e-02 6.67142e-03 -0.101598 E

MSE 1 4.66999e-02 6.67142e-03 -0.101598 El
Sp 1 4.66999e-02 6.67142e-03 -0.101598 El
Cp 1 4.66999e-02 6.67142e-03 -0.101598 El

SE 4.52970e-02 6.47101e-03 -0.946171 X2
Sp 1 4.52970e-02 6.47101e-03 -0.946171 X2

Cp 1 4.52970e-02 6.47101e-03 -0.946171 X2

MSE 3 2.84832e-02 5.69664e-03 3.30669 Xl X2 X3
Sp 1 3.08908e-02 4.41297e-03 1.67367 X2
Cp 1 3.08908e-02 4.41297e-03 1.67367 X2

MSE 1 4.47498e-02 6.39283e-03 -0.492574 El
Sp 1 4.47498e-02 6.39283e-03 -0.492574 El
Cp 1 4.47498e-02 6.39283e-03 -0.492574 El
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MSE 1 6.10468e-02 8.72097e-03 -0.754845 X2
Sp 1 6.10468e-02 8.72097e-03 -0.754845 X2
Cp 1 6.10468e-02 8.72097e-03 -0.754845 X2

MSE 1 2.40736e-02 3.43908e-03 1.06484 X3
* Sp 1 2.40736e-02 3.43908e-03 1.06484 X3

Cp 1 2.40736e-02 3.43908e-03 1.06484 X3

MSE 1 4.34820e-02 6.21172e-03 0.251277 X

Sp 1 4.34820e-02 6.21172e-03 0.251277 Xl
Cp 1 4.34820e-02 6.21172e-03 0.251277 Xl

MSE 2 2.60387e-02 4.33979e-03 1.65346 X2 X3
Sp 2 2.60387e-02 4.33979e-03 1.65346 X2 X3
Cp 2 2.50387e-02 4.33979e-03 1.65346 X2 X3

MSE 3 1.14088e-02 2.28177e-03 3.04763 Xl X3 El

Sp 3 1.14088e-02 2.28177e-03 3.04763 Xl X3 El
Cp 3 1.14088e-02 2.28177e-03 3.04763 Xl X3 El

MSE 4 1.11825e-02 2.79562e-03 5.00000 Xl X2 X3 El
• Sp 2 1.66321e-02 2.77202e-03 6.41136 Xl El

Cp 4 1.11825e-02 2.79562e-03 5.00000 Xl X2 X3 El

* MSE 3 1.24700e-02 2.49400e-03 3.16464 X2 X3 El
Sp 1 1.44043e-02 2.05776e-03 1.95435 X2
Cp 1 1.44043e-02 2.05776e-03 1.95435 X2

MSE 1 3.17437e-02 4.53481e-03 -0.727781 X3

Sp 1 3.17437e-02 4.53481e-03 -0.727781 X3
Cp 1 3.17437e-02 4.53481e-03 -0.727781 X3

MSE 3 3.45629e-02 6.91257e-03 3.52295 Xl X2 X3
Sp 1 4.07384e-02 5.81977e-03 2.67969 X3

* Cp 1 4.07384e-02 5.81977e-03 2.67969 X3
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MSE 1 6.70823e-02 9.58318e-03 -0.670246 X3
Sp 1 6.70823e-02 9.58318e-03 -0.670246 X3
Cp 1 6.70823e-02 9.58318e-03 -0.670246 X3

MSE 2 3.87667e-02 6.46111e-03 1.12307 X3 El
Sp 1 4.21533e-02 6.02190e-03 0.366424 El
Cp 1 4.21533e-02 6.02190e-03 0.366424 El

MSE 1 4.98360e-02 7.11942e-03 -0.172478 X2
Sp 1 4.98360e-02 7.11942e-03 -0.172478 X2
Cp 1 4.98360e-02 7.11942e-03 -0.172478 X2

MSE 1 1.98619e-02 2.83742e-03 -0.108219 El
Sp 1 1.98619e-02 2.83742e-03 -0.108219 El
Cp 1 1.98619e-02 2.83742e-03 -0.108219 El

MSE 2 2.27566e-02 3.79276e-03 1.19987 Xl X2
Sp 2 2.27566e-02 3.79276e-03 1.19987 Xl X2
Cp 1 2.67326e-02 3.81894e-03 0.981005 X2

MSE 1 2.31557e-02 3.30796e-03 -0.325469 X2
Sp 1 2.31557e-02 3.30796e-03 -0.325469 X2
Cp 1 2.31557e-02 3.30796e-03 -0.325469 X2

MSE 2 2.96808e-02 4.94681e-03 1.36022 Xl X3
Sp 2 2.96808e-02 4.94681e-03 1.36022 Xl X3
Cp 2 2.96808e-02 4.94681e-03 1.36022 Xl X3

***** ******** **************** ***********************

MSE 3 2.72695e-02 5.45390e-03 3.00697 Xl X2 El
Sp 3 2.72695e-02 5.45390e-03 3.00697 Xl X2 El
Cp 3 2.72695e-02 5.45390e-03 3.00697 Xl X2 El

MSE 2 4.81207e-02 8.02012e-03 1.77244 X3 El
Sp 1 5.14718e-02 7.35311e-03 1.05649 X3
Cp 1 5.14718e-02 7.35311e-03 1.05649 X3
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MSE 1 0.124977 1.78539e-02 -0.908950 X2
Sp 1 0.124977 1. 7 8539e-02 -0.908955 X2
Cp 1 0.124977 1.78539e-02 -0.908955 X2

MSE 1 3.86961e-02 5.52802e-03 -0.554765 X3
Sp 1 3 .86961e-02 5.52802e-03 -0.554765 X3
Cp 1 3.86961e-02 5.52802e-03 -0.554765 X3

MSE 2 1.07762e-02 1.79603e-03 1.05727 X3 El
Sp 1 1.25208e-02 1.78869e-03 0.715458 El
Cp 1 1.25208e-02 1.78869e-03 0.715458 El

MSE 4 2.31882e-02 5.79705e-03 5.00000 Xl X2 X3
El

Sp 2 2.46525e-02 4.10876e-03 3.44206 Xl El
Cp 2 2 .4 6525e-02 4.10876e-03 3.44206 Xl El

MSE 1 6.04122e-02 8.63031e-03 -0.792417 Xl
Sp 1 6.04122e-02 8.63031e-03 -0.792417 Xl
Cp 1 6.04122e-02 8.63031e-03 -0.792417 Xl

MSE 1 4.6259e-02 6.60844e-03 0.381250 El
Sp 1 4.62591e-02 6.60844e-03 0.381250 El
ep 1 4.62591e-02 6.60844e-03 0.381250 El
Cp 1 4.62591e-02 6.60844e-03 0.381250 El

MSE 1 0.110044 1.57205e-02 -0.301020 Xl
Sp 1 0.110044 1.57205e-02 -0.301020 Xl
Cp 1 0.110044 1.57205e-02 -0.301020 Xl

*MSE 1 0.116894 1.66991e-02 -0.512063 El
Sp 1 0.116894 1.66991e-02 -0.512063 El
Cp 1 0.116894 1.66991e-02 -0.512063 El

MSE 3 5.91980e-02 1.18396e-02 3.09286 Xl X3 El
Sp 1 6.13972e-02 8.77102e-03 1.04274 X2
Cp 1 6.13972e-02 8.77102e-03 1.04274 X2
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MSE 3 1.67376e-02 3.34753e-03 3.37179 X2 X3 El

Sp 3 1.67376e-02 3.34753e-03 3.37179 X2 X3 El

* Cp 3 1.67376e-02 3.34753e-03 3.37179 X2 X3 El

MSE 1 8.60897e-02 1.22985e-02 0.261788 El
Sp 1 8.60897e-02 1.22985e-02 0.261788 El

* Cp 1 8.60897e-02 1.22985e-02 0.261788 El

MSE 3 1.19855e-02 2.39709e-03 3.05798 Xl X2 X3

Sp 2 1.26033e-02 2.10055e-03 2.20518 Xl X3

Cp 2 1.26033e-02 2.10055e-03 2.20518 Xl X3

MSE 2 3.42009e-02 5.70015e-03 1.36503 Xl El

Sp 1 3.86254e-02 5.51791e-03 0.924681 El
Cp 1 3.86254e-02 5.51791e-03 0.924681 El

MSE 1 3.65205e-02 5.21721e-03 -9.18206e-02 X3

Sp 1 3.65205e-02 5.21721e-03 -9.18206e-02 X3
Cp 1 3.65205e-02 5.2172le-03 -9.18206e-02 X3

MSE 2 2.50195e-02 4.16992e-03 1.49327 X2 El
Sp 1 2.60450e-02 3.72071e-03 0.535332 El
Cp 1 2.60450e-02 3.72071e-03 0.535332 El

MSE 1 4.73777e-02 6.76825e-03 -0.485272 El
Sp 1 4.73777e-02 6.76825e-03 -0.485272 El
Cp 1 4.73777e-02 6.76825e-03 -0.485272 El

MSE 2 4.89740e-02 8.16234e-03 1.74329 Xl X3

Sp 1 5.48795e-02 7.83993e-03 1.35524 Xl
Cp 1 5.48795e-02 7.83993e-03 1.35524 Xl

MSE 1 2.25924e-02 3.22748e-03 0.729942 El
Sp 1 2.25924e-02 3.22748e-03 0.729942 El
Cp 1 2.25924e-02 3.22748e-03 0.729942 El
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The avg number of vars using MSE was 1.71667
The avg number of errors from MSE was 0.4166670
The avg number of vars using Sp was 1.26667
The avg number of errors from Sp was 0.333333

The avg number of vars using Cp was 1.26667
The avg number of errors from Cp was 0.333333

where

errors stands for extraneous terms

* vars stands for the number of variables chosen.

To find the response in the Response Surface Phase, the

* following equation was used.

(1-avg errors)/(avg vars)

For example, the following is the calculation for the C,

case.

(1-.33333)/1.2667 .5263

This value was used as one of the 64 CP response values in

* the response surface phase.
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Appendix F: Fortran Program for finding
*TMSEP values, rank ordering them and

Comparing the three criteria

* **** ***** ** ***** **** * ***** ***************

* This program is designed to take a modified SAS program
* and an existing data set and find the TMSEP the models.
* The modifications necessary are the same as discussed in
* Appendix D.

* The one exception is that the SAS listing prints out the
* coefficient values. When the variable is not included in
* the model a "." is left. This symbol must be replaced
* with a 01.
* To accomplish this the following UNIX editing command can
* be used.

* g/ \. /s// 0 /g

* This command will make the appropriate substitution.

* In this program all integer values are counters (for do
* loops except for the arrays.

S* variable ptrmseptrsp,ptrcp are used to keep track
* of the lowest value found using
* MSE, S., and Cp respectively.

* spcount,equalcount,spcpct,cpcount are all
* counters for keeping track of the

* * number of times the lowest TMSEP value
* was found by Min Sp, all techniques,
* Min S and Min Cp, and Min Cp only.

r2,mse,sp,cp are the arrays for r 2 , mse, SP
* and C .

* bO and betas are the values for the
* coefficients

* yssepmse,yssepsp,yssepcp are the Sum-of
* -Squares for the respective technique.

* ymsepmse,ymsepsp,ymsepcp are the MSEP
* values using the respective technique.

integer i,k,j,p,h,num(15),ptrmse,ptrsp,ptrcp

86



in~teger spcount,equalcnt,set,check(4),spcpct,cpcount
real bO 15) ,r2 (15),mse (15),sp (15)
real betas(4,15),minmse,mincp,minsp

0real x(4),exx3ex3(4),b~mse
real b~sp,b0cp,ypredmse~ypredsp
real ypredcp,yrnsepmse,ymsepsp,ymsepcp
real yssepmse,yssepsp,yssepcp,y
real cp(15)

spcpct=0
equa lcnt=0
spcount=0
cpcount=0
msecount=0
check(l1)=4

0 check(2)=10
check (3) =14
check(4 ) =1 5

open(unit=12,file= Imsepl.lis',status=1od')
open(unit=10,file='msepl.dat',status='old')

0 ~open(unit=ll,file='nsepl-out',status='new')

do 20 k=1,60
do 10 i=1 ,15
read (12,*) num(i), r2(i), mse(i), sp(i), cp(i),

bO (i)
* + ,betas (1,ia),betas (2, i),betas (3, i),betas (4, i)

'ninmse =10000
minsp =10000
mincp = 10000
yssepnise=0
yssepsp =0

0 yssepcp =0
ptrmse = 0
ptrsp = 0
ptrcp = 0
do 30 j=1, 4

if(mse(check(j)l.lt.minmse) then
* minnrse = mse(check(j))

ptrmse = check(j)
endif
if (sp(check(j)).lt.minsp) then

niinsp = sp~check(j))
ptrsp - check(j)

* endif
if (cp(check(j)).lt.mincp) then

niincp = cp(check(j))
ptrcp - check(j)

endif
30 continue

*10 continue

87



do 50 h= 1,20
read (10, *) set, y, x(1) ,x(2),x (3) ,x (4) ,ex

*ypredmse= 0
ypredsp = 0
ypredcp = 0
yactual = 0
b~mse = b0(ptrmse)
b~sp = b0(ptrsp)

*b~cp = bO(ptrcp)
ypredmse= b~mse
ypredsp = b~sp
ypredcp = b~cp
x3ex3(1)= x(l)
x3ex3(2)= x(2)

*x3ex3(3)= x(3)
x3ex3(4)= ex

do 60 p=1, 4

yactual =yactual+x(p)

60 continue
* do 70 p=1,4

ypredmse =ypredmse + betas(p,ptrmlse)*x3ex3(p)
ypredsp =ypredsp + betas(p,ptrsp) *x3ex3(p)
ypredcp =ypredcp + betas(p,ptrcp) *x3ex3(p)

70 continue
ysseprnse = ((ypredmse-yactual)**real(2)) + yssepmse

yssepsp = ((ypredsp -yactual)**real(2)) + yssepsp
yssepcp =((ypredcp -yactuai)**real(2)) + yssepcp

50 continue
ymsepmse = yssepmse / (20-num(ptrmse))
ymsepsp = yssepsp / (20-num(ptrsp))

*ymsepcp =yssepcp / (20-nuin(ptrcp))

if(ynisepsp.lt.ymsepcp) spcount=spcouit+l
if (ynsepsp.eq.ymsepmse) equalcnt-equalcnt+l
if(ymsepcp. lt.ymsepsp) cpcount=cpcount+l
if(ymsepmse.lt.ymsepsp) msecount=msecount+l

* if(ymsepsp.eq.ymsepcp.and.ymsepmse.gt.ymsepsp)
spcpcnt=spcpct+1

write(l1,*) 'run k
write(ll,*) II

write(l1,*)II
write(ll,*) I Sp MSEP = , ymsepsp

*write(ll,*) I Cp MSEP = , ywsepcp
write(ll,*) I MSE MSEP = ,ymsepmse

writefll,*) I
write(ll,*)I

20 continue
write(11,*) I

*write(ll,*) I'
write(l1,*) I
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write(11,*) 'Number of times Sp had smallest MSEP
Ispcount

*write(11,*) 'Number of times Cp had smallest MSEP
,cpcount

write(11,*) Number of times MSE had smallest MSEP
O ,msecount

write(11,*) Number of times Cp and Sp were equal
I sppc

*write(11,*) All MSEPs were equal',equalcnt
END
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Appendix G: Sample Output for Phase Two of Analysis

The following is a sample output for phase two of the

analysis. This output is from the program found in Appendix

• F. The TMSEP values from each method is given, then the

rank ordered TMSEP values for each subset of values is

given.

run

Sp TMSEP = 8.1625051E-04
Cp TMSEP = 8.1625051E-04
MSE TMSEP = 8.1625051E-04

TMSEPs FOR RUN 1

* 1 5.3875311E-04
2 6.2458171E-04
3 6.2816928E-04
4 7.8544696E-04
5 8.1625051E-04
6 8.6704991E-04

* 7 8.7211549E-04

8 8.9747010E-04
9 9.1317965E-04

10 9.5657917E-04
11 1.3182798E-03
12 1.4625470E-03
13 1.7037858E-03

14 1.8694992E-03

15 9.8459609E-03
run 2

Sp TMSEP - 3.9654067E-03
Cp TMSEP = 3.9654067E-03
MSE TMSEP = 3.9654067E-03

TMSEPs FOR RUN 2
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1 2.0111492E-03
2 2.2425181E-03
3 2.2925893E-03
4 3.9654067E-03
5 4.0591503E-03
6 4.1853175E-03
7 4.3666265E-03
8 4.4225999E-03
9 4.4807326E-03

10 4.4842619E-03
11 5.8024856E-03
12 5.8971639E-03
13 6.2541468E-03

14 6.5273000E-03
15 1.0629051E-02

run 3

Sp TMSEP 1.7187677E-02
Cp TMSEP 1.7187677E-02
MSE TMSEP 1.7187677E-02

TMSEPs FOR RUN 3

1 1.0465025E-02
2 1.2726073E-02
3 1.3100259E-02
4 1.6458001E-02
5 1.7187677E-02
6 1.7703351E-02
7 1.9149231E-02
8 2.0130737E-02
9 2.1833103E-02

10 2.2608828E-02

11 2.3035588E-02
12 2.3823561E-02
13 2.5661029E-02
14 2.7239855E-02

15 3.0690275E-02
run 4

Sp TMSEP = 2.8920151E-02
Cp TMSEP = 2.8920151E-02
MSE TMSEP = 2.8920151E-02
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TMSEPs FOR RUN 4

* 1 1.8989012E-02

2 1.9804025E-02
3 2.0740228E-02
4 2.1199832E-02
5 2.1934517E-02
6 2.2168593E-02
7 2.2491228E-02
8 2.3455916E-02
9 2.3542039E-02

10 2.4646813E-02
11 2.5090951E-02
12 2.6086060E-02
13 2.6278302E-02
14 2.8023606E-02
15 2.8920151E-02

run 5

*Sp TMSEP = 2.5275916E-02
Cp TMSEP = 2.5275916E-02
MSE TMSEP = 2.5275916E-02

TMSEPs FOR RUN 5

1 1.1425762E-02
2 1.2566670E-02
3 1.2761764E-02
4 1.3455779E-02
5 1.4553362E-02
6 1.5473412E-02
7 1.5937347E-02
8 1.6735807E-02
9 1.7853793E-02

10 1.9062478E-02
11 2.1006519E-02
12 2.5275916E-02
13 2.7103966E-02
14 2.7148893E-02
15 2.9038427E-02

run 6

Sp TMSEP 1.5230293E-02
Cp TMSEP = 1.5230293E-02
MSE TMSEP = 1.5230293E-02
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TMSEPs FOR RUN 6

1 1.1189967E-02

2 1.1914390E-02
3 1.2381560E-02
4 1.2513387E-02
5 1.3219284E-02
6 1.3444155E-02
7 1.5230293E-02
8 1.5570977E-02
9 1.5827768E-02

10 1.6145628E-02
11 '.6554100E-02
12 1.6587460E-02
13 1.6841978E-02
14 1.7723817E-02
15 2.0091623E-02

run 7

Sp TMSEP = 8.4279571E-03
Cp TMSEP = 8.4279571E-03
MSE TMSEP = 8.4279571E-03

TMSEPs FOR RUN 7

1 8.4279571E-03
2 8.6327204E-03
3 8.6681442E-03
4 8.7661548E-03
5 8.7986309E-03
6 9.2602726E-03
7 9.5974831E-03
8 1.0461051E-02
9 1.0792202E-02

10 1.0847315E-02
11 1.0878014E-02

12 1.0926300E-02
13 1.1085336E-02
14 1.1660442E-02
15 3.0683922E-02

run 8

Sp TMSEP 01.917470E-03
Cp TMSEP = 1.9174700E-03

MSE TMSEP = 1.0391608E-02
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TMSEPs FOR RUN 8

1 1.9174OOE-03

2 2.1675059E-03

3 2.4701473E-03
4 5.9353570E-03
5 8.1103193E-03
6 1.0391608E-02
7 1.0793708E-02
8 1.2050519E-02
9 1.2089508E-02

10 1.2366496E-02
11 1.2528760E-02
12 1.2863966E-02
13 1.6300550E-02

14 1.7629199E-02

15 1.9998444E-02

run 9

Sp TMSEP = 2.9792758E-03
Cp TMSEP = 2.9792758E-03
MSE TMSEP = 2.9792758E-03

TMSEPs FOR RUN 9

* 1 2.5938307E-03
2 2.8756007E-03
3 2.9792758E-03
4 3.0860456E-03
5 3.8913097E-03
6 4.2111641E-03
7 4.4655493E-03
8 4.7994438E-03
9 5.4206038E-03

10 7.9978053E-03
11 8.4198406E-03
12 9.3529476E-03

* 13 9.8962309E-03
14 1.1325269E-02
15 1.5649561E-02

run 10

Sp TMSEP = 3.4058213E-03
Cp TMSEP = 3.4058213E-03
MSE TMSEP = 9.9750860E-03

TMSEPs FOR RUN 10
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1 2.1047422E-03
2 2.5313916E-03
3 3.4058213E-03
4 4.1502793E-03
5 4.9941130E-03
6 9.2351809E-03
7 9.4529847E-03
8 9.9750860E-03
9 1.0221747E-02

10 1.0269716E-02
11 1.1170504E-02
12 1.4728523E-02
13 1.6914524E-02
14 1.9482933E-02
15 2.2141431E-02

run 11

Sp TMSEP = 1.8264394E-02
Cp TMSEP = 1.8264394E-02
MSE TMSEP = 2.6563916E-02

TMSEPs FOR RUN 11

1 5.1681511E-03
2 6.1819288E-03
3 6.7232223E-03
4 9.9291867E-03
5 1.0711449E-02
6 1.0777702E-02
7 1.1229556E-02
8 1.3848314E-02
9 1.7541861E-02

10 1.8264394E-02
11 1.8279061E-02
12 1.9208413E-02
13 2.3745688E-02
14 2.6563916E-02
15 2.8645089E-02

run 12

Sp TMSEP = 6.1405003E-03
* Cp TMSEP = 6.1405003E-03

MSE TMSEP = 1.3503841E-02

TMSEPs FOR RUN 12
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1 1.8639894E-03
2 1.9315871E-03
3 2.0497970E-03
4 2.2980263E-03
5 2.4225425E-03
6 2.7120986E-03
7 6.1405003E-03
8 7.1428162E-03
9 7.2628092E-03

10 8.3331009E-03
11 8.9695957E-03
12 1.3503841E-02
13 1.4081514E-02
14 1.4754524E-02
15 1.5624065E-02

run 13

Sp TMSEP = 3.2588169E-02
Cp TMSEP = 3.2588169E-02
MSE TMSEP = 4.0740110E-02

7MSEPs FOR RUN 13

1 7.9008838E-04
2 2.3885965E-03
3 4.2190668E-03
4 4.7011017E-03

5 6.7453287E-03
6 8.6223893E-03
7 9.0424791E-03
8 1.4171562E-02
9 1.5555089E-02

10 1.6289905E-02
11 2.1787029E-02
12 3.2588169E-02
13 3.4396078E-02
14 4.0740110E-02
15 4.3201827E-02

run 14

Sp TMSEP = 1.1849147E-02
Cp TMSEP = 1.1849147E-02
MSE TMSEP 1.1849147E-02

TMSEPs FOR RUN 14

0
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1 4.8623332E-03
2 4.9072048E-03
3 5.1156250E-03
4 5.8454480E-03
5 7.1764030E-03

* 6 7.8983689E-03
7 8.7281801E-03
8 1.1528674E-02
9 1.1675153E-02

10 1.1849147E-02
11 1.2552307E-02

* 12 1.3260029E-02
13 1.5406845E-02
14 1.6281059E-02
15 1.9996813E-02

run 15

Sp TMSEP = 7.47934C3E-03
Cp TMSEP = 1.7116755E-02
MSE TMSEP = 1.7116755E-02

TMSEPs FOR RUN 15

1 6.6161933E-03
2 6.8892450E-03
3 7.4793408E-03
4 7.7769053E-03

* 5 8.7918332E-03
6 9.0924781E-03
7 9.1773802E-03
8 9.7412989F-03
9 9.8114768E-03

10 1.1472788E-02
0 11 1.7001675E-02

12 1.7116755E-02
13 1.7942483E-02
14 1.8224856E-02
15 1.9186204E-02

run 16
0

Sp TMSEP = 2.4616949E-02
Cp TMSEP 2.4616949E-02
MSE TMSEP 2.4616949E-02

0
TMSEPs FOR RUN 16
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1 2.5192862E-03

2 6.2425360E-03
3 6.7220321E-03
4 8.6688502E-03
5 1.0253071E-02
6 1.1382802E-02
7 1.3577277E-02
8 1.5074901E-02
9 1.5540805E-02

10 1.5885668E-02
11 1.7365742E-02

* 12 2.4616949E-02
13 2.6280256E-02
14 2.8023722E-02
15 2.9615028E-02

run 17

Sp TMSEP = 3.4056220E-02
Cp TMSEP = 3.4056220E-02
MSE TMSEP = 3.4056220E-02

* TMSEPs FOR RUN 17

1 2.3214938E-03
2 2.5332391E-03
3 2.6155079E-03
4 3.1588618E-03

0 5 7.8641446E-03
6 1.2681485E-02
7 1.5965864E-02
8 2.8908700E-02
9 3.0276716E-02

10 3.2774188E-02
11 3.3868384E-02
12 3.4056220E-02
13 3.9103031E-02
14 4.3489311E-02
15 4.7426648E-02

run 18

Sp TMSEP 1.1656721E-02
Cp TMSEP = 1.1656721E-02
MSE TMSEP = 1.1656721E-02

TMSEPs FOR RUN 18
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1 8.8144913E-03
2 9.2402538E-03
3 9.3459627E-03
4 1.0430153E-02
5 1.0963820E-02

6 1.1204778E-02
7 1.1656721E-02
8 1.3512224E-02
9 1.3699356E-02

10 1.5192608E-02
11 1.5793409E-02
12 1.6079456E-02
13 1.7682591E-02
14 1.8760057E-02
15 2.5110584E-02

run 19

Sp TMSEP = 2.8525121E-03
Cp TMSEP = 2.8525121E-03
MSE TMSEP = 8.1014968E-03

TMSEPs FOR RUN 19

1 2.8525121E-03
2 4.4923639E-03
3 4.9251076E-03
4 4.9598929E-03
5 8.1014968E-03
6 8.1187468E-03
7 8.4805330E-03
8 8.7108472E-03
9 8.9461999E-03

10 1.0312763E-02
11 1.2119596E-02
12 1.3127306E-02
13 1.3978862E-02
14 1.6505282E-02
15 2.0519499E-02

run 20

Sp TMSEP = 3.8725424E-03
Cp TMSEP = 3.8725424E-03
MSE TMSEP = 2.3732318E-02

TMSEPs FOR RUN 20
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1 2.5775689E-03
2 2.8687967E-03
3 3.0975479E-03

4 3.8725424E-03
5 5.0329203E-03
6 7.2322008E-03
7 8.9591537E-03
8 9.2313904E-03
9 1.3217278E-02

10 1.6817946E-02
11 1.7074332E-02
12 1.9801777E-02
13 2.1266723E-02
14 2.3732318E-02
15 2.6426652E-02

run 21

* Sp TMSEP = 1.7052114E-02

Cp TMSEP = 1.7052114E-02
MSE TMSEP = 1.7052114E-02

TMSEPs FOR RUN 21

1 1.7052114E-02
2 2.2108998E-02
3 2.2773303E-02
4 2.3853436E-02
5 2.3881707E-02
6 2.5029171E-02
7 2.5230104E-02
8 2.6611436E-02
9 2.6725085E-02

10 2.7688080E-02
11 2.7753545E-02

* 12 2.9282084E-02
13 2.9369567E-02

14 2.9715974E-02
15 3.1632055E-02

run 22

Sp TMSEP 5.5181938E-03
Cp TMSEP = 5.5181938E-03
MSE TMSEP = 5.5181938E-03

* TMSEPs FOR RUN 22
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1 3.6380207E-03
2 3.9318283E-03
3 3.9480580E-03
4 4.1614547E-03
5 4.2129597E-03

* 6 4.3571047E-03
7 5.5181938E-03
8 5.7162573E-03
9 5.8647827E-03

10 6.0956995E-03
11 6.8830424E-03

* 12 7.0184362E-03
13 7.4183247E-03
14 7.5743883E-03
15 1.9468121E-02

run 23

Sp TMSEP 1.2474651E-02
Cp TMSEP = 1.2474651E-02
MSE TMSEP 1.6586190E-02

TMSEPs FOR RUN 23

1 1.7154425E-03

2 1.8433610E-03
3 2.1247640E-03
4 3.7305583E-03
5 7.3689125E-03
6 7.6402198E-03
7 1.0252496E-02

8 1.0763265E-02
9 1.1819728E-02

10 1.2474651E-02
11 1.3044675E-02
12 1.5219216E-02
13 1.6586190E-02
14 1.7523689E-02
15 1.8898807E-02

run 24

Sp TMSEP 2.0092988E-02

Cp TMSEP 2.0092988E-02
MSE TMSEP 2.0092988E-02

TMSEPs FOR RUN 24
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1 3.4344932E-03
2 6.0286978E-03
3 6.0683978E-03
4 6.0691400E-03
5 6.2191375E-03
6 7.2317598E-03
7 8.2883285E-03
8 1.1216477E-02
9 1.4045537E-02

10 1.4915518E-02
11 1.5253766E-02
12 1.5417388E-02
13 1.9777540E-02
14 2.0092988E-02
15 2.1272380E-02

run 25

Sp TMSEP 2.0874506E-03
Cp TMSEP = 2.0874506E-03

MSE TMSEP = 2.0009512E-02

TMSEPs FOR RUN 25

1 2.0874506E-03

2 3.2037264E-03
3 3.9723651E-03

4 4.2093988E-03
5 5.0320607E-03

6 5.2119563E-03
7 8.8053672E-03
8 1.0451779E-02
9 1.2837918E-02

10 1.3056729E-02
* 11 1.4630186E-02

12 2.0009512E-02
13 2.1082407E-02
14 2.1697044E-02

15 2.2916408E-02
run 26

Sp TMSEP 9.8276651E-04
Cp TMSEP = 9.8276651E-04
MSE TMSEP = 9.8276651E-04

TMSEPs FOR RUN 26
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1 3.6615500E-04
2 4.0323741E-04
3 9.8276651E-04
4 1.0234589E-03
5 1.0259064E-03

6 1.0351705E-03
7 1.1282420E-03
8 1.2075821E-03
9 1.2196909E-03

10 1.3010738E-03
11 1.5202522E-03
12 1.5768777E-03
13 1.7284348E-03
14 1.9685118E-03
15 1.2083132E-02

run 27

Sp TMSEP 6.8846606E-03
Cp TMSEP = 6.8846606E-03

MSE TMSEP = 1.9304380E-02

TMSEPs FOR RUN 27

1 6.8846606E-03
2 7.2969943E-03

3 9.8057995E-03
4 1.0382390E-02
5 1.2498997E-02

6 1.3136022E-02
7 1.3230429E-02
8 1.3853890E-02
9 1.3952672E-02

10 1.4731946E-02
11 1.7043175E-02
12 1.9304380E-02

13 2.0270826E-02
14 2.0551469E-02

15 2.1667840E-02
run 28

Sp TMSEP = 3.7091917E-03
Cp TMSEP = 3.7091917E-03
MSE TMSEP = 3.7091917E-03

TMSEPs FOR RUN 28
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1 3.5498959E-03
2 3.7091917E-03

3 3.8102050E-03
4 3.9531672E-03
5 4.0174657E-03
6 4.0629935E-03
7 4.0745367E-03
8 4.0909247E-03
9 4.2000455E-03

10 4.2432775E-03
11 4.3620034E-03
12 4.4159661E-03
13 4.4462909E-03
14 4.5218416E-03
15 1.1852265E-02

run 29

Sp TMSEP = 8.8697784E-03
Cp TMSEP = 8.8697784E-03
MSE TMSEP = 8.8697784E-03

TMSEPs FOR RUN 29

1 8.1481282E-03
2 8.2919262E-03
3 8.8697784E-03
4 8.9680441E-03
5 9.1282884E-03

6 9.2851929E-03
7 9.3137734E-03
8 9.5947059E-03
9 9.8677045E-03

10 9.9192383E-03
11 1.0009223E-02
12 1.0221915E-02
13 1.0479798E-02
14 1.0976000E-02
15 1.7647961E-02

run 30

Sp TMSEP 3.5457979E-03
Cp TMSEP = 3.5457979E-03
MSE TMSEP = 1.3879534E-02

TMSEPs FOR RUN 30
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1 1 3.5457979E-03
2 4.6322457E-03
3 4.8427694E-03
4 5.4951324E-03
5 6.3336785E-03
6 6.3531036E-03
7 7.4292999E-03

8 8.7361382E-03
9 9.9864267E-03

10 1.1301067E-02
11 1.3879534E-02
12 1.4671805E-02
13 1.4762038E-02
14 1.5681023E-02
15 2.0051859E-02

run 31

Sp TMSEP = 1.9329343E-02
Cp TMSEP = 1.9329343E-02
MSE TMSEP = 2.2040404E-02

TMSEPs FOR RUN 31

1 1.3012470E-03
2 1.3328010E-03
3 1.6352949E-03
4 1.7551928E-03
5 1.8518085E-03
6 2.0177322E-03

7 4.5819799E-03
8 4.9842852E-03
9 7.8484677E-03

10 1.1772109E-02
11 1.2443145E-02
12 1.9329343E-02
13 2.1689299E-02
14 2.2040404E-02
15 2.4905885E-02

run 32

Sp TMSEP = 5.0999749E-02
Cp TMSEP = 5.6429233E-02
MSE TMSEP - 6.2712573E-02

TMSEPs FOR RUN 32
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1 7.7922344E-03
2 9.5617203E-03
3 9.6836761E-03
4 1.1141410E-02
5 1.4167450E-02
6 1.4421574E-02
7 1.5424208E-02
8 1.6907291E-02
9 2.9010303E-02

10 2.9186631E-02
11 3.2019943E-02
12 5.0999749E-02

13 5.5162951E-02
14 5.6429233E-02
15 6.2712573E-02

run 33

Sp TMSEP = 8.4313720E-02
Cp TMSEP = 8.4313720E-02
MSE TMSEP = 8.4313720E-02

TMSEPs FOR RUN 33

1 1.6472956E-02
2 1.9875426E-02
3 2.3888426E-02
4 2.4913736E-02
5 2.6807437E-02
6 3.0863002E-02
7 3.6406118E-02
8 4.1674461E-02
9 4.9072534E-02

10 5.0164599E-02
11 5.6148276E-02
12 7.2232231E-02
13 7.6316334E-02

14 8.4313720E-02
15 9.0484820E-02

run 34

Sp TMSEP 1.9720267E-03
Cp TMSEP = 1.9720267E-03
MSE TMSEP = 1.9720267E-03

TMSEPs FOR RUN 34
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1 1.4564074E-03
2 1.5348943E-03
3 1.5788405E-03
4 1.7205393E-03
5 1.9720267E-03
6 3.0269641E-03
7 3.1256014E-03
8 3.4055866E-03
9 3.6278572E-03

10 3.9648265E-03
11 4.2102486E-03

* 12 5.5269981E-03

13 6.0082953E-03
14 6.6690734E-03
15 1.7902035E-02

run 35

Sp TMSEP 2.2126485E-02
Cp TMSEP = 2.2126485E-02

MSE TMSEP = 2.8070798E-02

* TMSEPs FOR RUN 35

1 2.1942048E-03

2 3.8941863E-03

3 5.9093987E-03
4 5.9594219E-03

0 5 1.0993944E-02

6 1.1843625E-02
7 1.2036902E-02

8 1.3240814E-02
9 1.3524123E-02

10 1.6991993E-02
* 11 1.8741287E-02

12 1.9171823E-02
13 2.2126485E-02
14 2.3006901E-02

15 2.8070798E-02
run 36

0

Sp TMSEP = 1.5084335E-02
Cp TMSEP = 1.5084335E-02
MSE TMSEP = 2.3686530E-02

TMSEPs FOR RUN 36
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1 1.5084335E-02

2 1.5954880E-02
3 1.7274419E-02
4 1.7573619E-02

5 1.8410455E-02
6 1.8481053E-02

7 1.9330112E-02

8 2.0087145E-02

9 2.0443222E-02
10 2.1288132E-02

11 2.1304168E-02
12 2.3686530E-02
13 2.5245925E-02
14 2.5533320E-02
15 2.7481722E-02

run 37

Sp TMSEP = 3.8605933E-03
Cp TMSEP = 2.6786476E-02
MSE TMSEP = 2.6786476E-02

TMSEPs FOR RUN 37

1 7.0788513E-04

2 7.3154463E-04
3 1.3002879E-03
4 2.6231960E-03
5 2.9667136E-03
6 2.9975821E-03

7 3.8605933E-03
8 8.0252122E-03
9 1.6348951E-02

10 1.8301096E-02
11 2.0436686E-02
12 2.2819119E-02
13 2.6190016E-02
14 2.6786476E-02
15 3.0853484E-02

run 38

Sp TMSEP 0 1.0595867E-02
Cp TMSEP = 1.0595867E-02

MSE TMSEP = 2.3941863E-02

TMSEPs FOR RUN 38
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0

1 2.9883636E-03
2 4.1764169E-03
3 4.8778988E-03
4 9.7571025E-03
5 9.9973157E-03

* 6 1.0465559E-02
7 1.0595867E-02
8 1.4187485E-02
9 1.7074063E-02

10 2.0584134E-02
11 2.3294877E-02

* 12 2.3941863E-02
13 2.5516720E-02
14 2.5926596E-02
15 2.7840657E-02

run 39

Sp TMSEP = 1.0622767E-02
Cp TMSEP = 1.0622767E-02
MSE TMSEP = 1.0622767E-02

TMSEPs FOR RUN 39

1 1.1929536E-03
2 1.3373954E-03
3 1.6708911E-03
4 3.4250987E-03
5 3.5063413E-03
6 4.6463534E-03
7 4.6803518E-03
8 8.6782407E-03
9 8.7229246E-03

10 8.8040661E-03
11 1.0622767E-02

12 1.2146195E-02
13 1.2587945E-02
14 1.3528628E-02
15 1.7254293E-02

run 40

Sp TMSEP = 3.5547487E-02
Cp TMSEP = 3.5547487E-02
MSE TMSEP = 4.1834652E-02

TMSEPs FOR RUN 40
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1 7.5619790E-04
2 1.5781120E-03
3 2.6893581E-03
4 2.8271538E-03
5 1.0157598E-02

6 1.0704858E-02
7 1.1176147E-02

8 1.2656823E-02

9 2.0222088E-02
10 2.0667935E-02
11 2.1879649E-02
12 2.8531680E-02

* 13 3.0591035E-02

14 3.5547487E-02
15 4.1834652E-02

run 41

Sp TMSEP = 2.2413865E-02
Cp TMSEP = 2.2413865E-02
MSE TMSEP = 2.8072061E-02

TMSEPs FOR RUN 41

1 1.0048087E-02

2 1.5616417E-02
3 1.5880233E-02
4 1.6917937E-02
5 1.7490519E-02
6 1.7648792E-02
7 1.8472508E-02

8 1.9556798E-02
9 2.0597108E-02

10 2.1678284E-02
11 2.2413865E-02
12 2.4091654E-02
13 2.7307892E-02
14 2.8072061E-02

15 3.0794047E-02
run 42

Sp TMSEP 4.7981236E-03
Cp TMSEP - 4.7981236E-03
MSE TMSEP = 4.7981236E-03

TMSEPs FOR RUN 42
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1 3.4364881E-03
2 3.5259190E-03
3 3.6066370E-03
4 3.9199176E-03
5 4.0680161E-03
6 4.1261218E-03
7 4.7981236E-03
8 5.2037672E-03
9 5.3428058E-03

10 5.6819613E-03
11 5.7216412E-03
12 6.0622832E-03
13 6.0960101E-03
14 6.4953892E-03
15 1.5678339E-02

run 43

Sp TMSEP = 3.9310423E-03
Cp TMSEP = 3.9310423E-03
MSE TMSEP = 3.9310423E-03

TMSEPs FOR RUN 43

1 1.8738484E-03
2 2.3403340E-03
3 2.9570037E-03
4 3.1850252E-03
5 3.9310423E-03
6 4.7286372E-03
7 4.8334445E-03
8 4.8407987E-03
9 5.7194503E-03

10 6.7090066E-03
11 7.6004523E-03
12 9.2586232E-03
13 9.2892852E-03
14 1.2049303E-02
15 1.2300548E-02

run 44

Sp TMSEP = 1.2019108E-03
Cp TMSEP = 1.8140119E-02
MSE TMSEP - 1.8140119E-02

TMSEPs FOR RUN 44
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1 3.9169341E-04
2 5.2826642E-04
3 1.20 1 9108E-03

4 1.2748841E-03
5 3.4131568E-03
6 6.1522294E-03
7 6.9718626E-03
8 7.0441552E-03

9 7.1675945E-03
10 7.9703350E-03
11 8.1011681E-03

* 12 8.6136796E-03
13 1.8140119E-02
14 1.9227074E-02
15 2.1237271E-02

run 45

Sp TMSEP = 3.0700916E-03
Cp TMSEP = 3.0700916E-03
MSE TMSEP = 1.1097923E-02

TMSEPs FOR RUN 45

1 3.0700916E-03
2 3.3025786E-03
3 4.1044764E-03
4 5.5306656E-03
5 5.6966278E-03
6 5.9962580E-03
7 6.9032218E-03
8 7.6960446E-03
9 1.0958084E-02

10 1.1097923E-02
11 1.1505049E-02
12 1.1665934E-02

13 1.1997189E-02
14 1.2202757E-02

15 1.3101306E-02

run 46

Sp TMSEP u 2.2392911E-03
Cp TMSEP = 8.1968531E-03
MSE TMSEP = 1.1323700E-02

TMSEPs FOR RUN 46
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1 2.2392911E-03
2 2.4520580E-03
3 2.9001222E-03
4 5.2466160E-03
5 5.2603823E-03
6 5.3152107E-03
7 6.3047521E-03
8 6.6063711E-03
9 7.9144575E-03

10 8.1968531E-03
11 8.2538687E-03
12 9.0868426E-03
13 1.1323700E-02
14 1.3579807E-02
15 1.5681304E-02

run 47

Sp TMSEP 1.0096396E-02
Cp TMSEP 1.0096396E-02
MSE TMSEP 1.0096396E-02

TMSEPs FOR RUN 47

1 9.9929059E-03

2 1.0018086E-02
3 1.0096396E-02
4 1.0306062E-02
5 1.1321264E-02
6 1.1852885E-02
7 1.2029038E-02

8 1.2128158E-02
9 1.2128995E-02

10 1.2503473E-02
11 1.2757318E-02
12 1.4217354E-02
13 1.4767253E-02
14 1.6271524E-02
15 2.8789150E-02

run 48

Sp TMSEP = 7.3499735E-03
Cp TMSEP = 7.3499735E-03
MSE TMSEP = 1.9433314E-02

TMSEPs FOR RUN 48
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1 7.3499735E-03

2 7.8419475E-03
3 1.0533275E-02
4 1.1174344E-02
5 1.1179664E-02
6 1.1932554E-02
7 1.5124455E-02
8 1.5476356E-02
9 1.5993901E-02

10 1.6502503E-02
11 1.7872537E-02
12 1.9433314E-02
13 2.0548729E-02
14 2.0941224E-02
15 2.2205124E-02

run 49

Sp TMSEP = 4.2170435E-02
Cp TMSEP = 4.2170435E-02
MSE TMSEP = 4.2170435E-02

TMSEPs FOR RUN 49

1 1.5701497E-02
2 1.6772849E-02
3 1.7934496E-02
4 1.9688854E-02

5 2.1170381E-02
6 2.2765471E-02

7 2.4873454E-02
8 2.5819845E-02
9 2.7326189E-02

10 2.9126355E-02
11 3.0813400E-02
12 3.1698938E-02
13 3.3878606E-02
14 4.2170435E-02
15 4.4911824E-02

run 50

Sp TMSEP 2.2768520E-02
Cp TMSEP = 2.2768520E-02

MSE TMSEP = 3.6368068E-02

TMSEPs FOR RUN 50
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1 1.5540421E-02

2 1.6995009E-02
3 1.7393902E-02
4 2.0387221E-02
5 2.1287283E-02
6 2.1346433E-02
7 2.2153363E-02
8 2.2768520E-02
9 2.3359068E-02

10 2.4774464E-02
11 2.5770180E-02
12 2.8919019E-02
13 3.0525209E-02
14 3.6368068E-02
15 3.8798217E-02

run 51

Sp TMSEP = 2.4604530E-03
Cp TMSEP = 2.4604530E-03
MSE TMSEP = 7.0150704E-03

TMSEPs FOR RUN 51

1 1.6393900E-03
2 1.8884840E-03
3 2.2606149E-03
4 2.4604530E-03
5 2.4627568E-03
6 2.6644068E-03
7 2.7719922E-03
8 3.1818897E-03
9 3.1976223E-03

10 3.4056555E-03
11 7.0150704E-03

12 7.1953204E-03
13 7.7710031E-03
14 7.9887751E-03

15 2.0532234E-02
run 52

Sp TMSEP 1.5042799E-02
Cp TMSEP = 3.2231480E-02
MSE TMSEP = 3.2231480E-02

TMSEPs FOR RUN 52
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1 1.3510313E-02
2 1.4268238E-02
3 1.5042799E-02
4 1.5315600E-02
5 1.6465578E-02
6 1.7620863E-02
7 1.8399971E-02
8 1.8756019E-02
9 2.1330154E-02

10 2.4062017E-02

11 2.4590410E-02
12 2.6639560E-02
13 2.7676962E-02
14 3.2231480E-02
15 3.5307933E-02

run 53

Sp TMSEP = 4.1374839E-03
Cp TMSEP = 4.1374839E-03
MSE TMSEP = 4.1374839E-03

TMSEPs FOR RUN 53

1 1.4167477E-03
2 1.8064859E-03
3 1.8127215E-03
4 4.1374839E-03
5 5.3663515E-03
6 5.3790277E-03
7 5.4524424E-03
8 5.7910713E-03

9 6.2028468E-03
10 6.9525018E-03

11 8.6443033E-03
12 8.7333312E-03
13 9.9164629E-03
14 1.0268040E-02
15 1.126737E-02

run 54

Sp TMSEP 1.4347644E-02
Cp TMSEP = 1.4347644E-02
MSE TMSEP = 1.4347644E-02

TMSEPs FOR RUN 54
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1 5.8415225E-03
2 6.4000203E-03
3 7.0034480E-03
4 8.8544022E-03
5 9.1899643E-03

6 9.4587682E-03
7 9.9534485E-03
8 1.0385258E-02
9 1.0859730E-02

10 1.1279927E-02
11 1.4146212E-02
12 1.4347644E-02
13 1.5366105E-02

14 1.7616469E-02
15 1.8684378E-02

run 55

Sp TMSEP = 1.2993388E-02
Cp TMSEP = 1.2993388E-02
MSE TMSEP = 1.9165561E-02

TMSEPs FOR RUN 55

1 4.9696909E-03
2 7.7763824E-03
3 9.6101258E-03
4 1.1696715E-02
5 1.2170565E-02
6 1.2716134E-02
7 1.2899847E-02
8 1.2993388E-02
9 1.5015327E-02

10 1.5555417E-02
11 1.5641246E-02
12 1.6055508E-02
13 1.7838184E-02

14 1.9165561E-02
15 2.1346293E-02

run 56

Sp TMSEP 6.3008070E-02
Cp TMSEP = 6.3008070E-02

MSE TMSEP = 7.3209882E-02

TMSEPs FOR RUN 56
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1 6.1677363E-02
2 6.2864579E-02
3 6.3008070E-02
4 6.6310331E-02
5 6.6765495E-02
6 6.6853113E-02
7 7.1422204E-02
8 7.1454287E-02
9 7.3190719E-02

10 7.3209882E-02
11 7.5800024E-02
12 7.7444568E-02

13 7.8586839E-02
14 7.9587929E-02
15 8.5475355E-02

run 57

Sp TMSEP = 3.7371186E-03
Cp TMSEP = 3.7371186E-03
MSE TMSEP = 3.7371186E-03

TMSEPs FOR RUN 57

1 3.7371186E-03
2 3.8739347E-03
3 3.9046754E-03
4 4.0383120E-03
5 4.1861599E-03

6 4.4727097E-03
7 4.6059825E-03
8 4.7026719E-03
9 5.1347492E-03

10 5.8260681E-03
11 5.8471588E-03
12 6.2553254E-03
13 6.4490214E-03
14 7.0934095E-03
15 9.5695062E-03

run 58

Sp TMSEP 1.2361378E-02
Cp TMSEP = 1.2361378E-02
MSE TMSEP = 1.2361378E-02

TMSEPs FOR RUN 58
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1 2.4738992E-03
2 3.7456378E-03
3 3.8988995E-03
4 4.2070122E-03
5 4.5560552E-03
6 4.8246444E-03
7 6.3058720E-03
8 1.2361378E-02
9 1.3068646E-02

10 1.3421705E-02
11 1.3535345E-02
12 1.4164726E-02
13 1.6804852E-02
14 1.7755972E-02
15 2.3304023E-02

run 59

* Sp TMSEP = 15110006E-02
Cp TMSEP = 1.5110006E-02
MSE TMSEP = 1.5110006E-02

TMSEPs FOR RUN 59

1 1.0106159E-02

2 1.1130731E-02
3 1.1358641E-02
4 1.1672366E-02

5 1.2471750E-02
6 1.3456321E-02

7 1.3687690E-02
8 1.5110006E-02
9 1.5243942E-02

10 1.7136147E-02
11 1.8399373E-02
12 1.8740477E-02

13 1.9748218E-02
14 2.0658856E-02
15 2.3248075E-02

run 60

Sp TMSEP = 1.8573448E-02
Cp TMSEP a 1.8573448E-02
MSE TMSEP = 1.8573448E-02
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TMSEPs FOR RUN 60
1 1.1594909E-02
2 1.2438751E-02
3 1.2594829E-02
4 1.2842594E-02

*5 1.3457467E-02
6 1.3940695E-02
7 1.5752792E-02
8 1.8573448E-02
9 2.0086005E-02

10 2.2414638E-02
11 2.3428341E-02
12 2.4330338E-02
13 2.5231192E-02
14 2.5254766E-02
15 2.7355636E-02
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